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Abstract

We introduce a super analogue of gl2-foams, and use it to define an invariant of oriented
tangles, shown to coincide with odd Khovanov homology when restricted to links. We then
define a supercategorification of the q-Schur algebra of level 2 and realise our construction
as a certain super-2-representation. This gives a representation theoretic construction of odd
Khovanov homology, where signs naturally arise as a byproduct of the super-2-categorical
structure. In the process, we define a tensor product for chain complexes in super-2-categories,
suitably compatible with homotopies. This could be of independent interest.
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1 Introduction

Khovanov homology [47] is a homological invariant of links categorifying the Jones polynomial.
Since its discovery, a plethora of approaches have appeared, including singular surfaces [4, 8, 15,
20, 48, 57, 72], categorical skew Howe duality [52, 67], matrix factorizations [51], categorification
of tensor products of representations [81], category O [59], algebraic geometry [16], symplectic
geometry [76], gauge theory [82], and mirror symmetry [1].

Given the central role played by Khovanov homology, it is surprising that the Jones polyno-
mial admits another categorification, called odd Khovanov homology [65]1. It agrees with Kho-
vanov homology modulo two, but the two homologies are distinct in the sense that one can find
pairs of knots distinguished by one but not the other, and vice-versa [78]. Odd Khovanov ho-
mology was discovered by Ozsváth, Rasmussen and Szabó in an attempt to lift to the integers
the Ozsváth–Szabó’s spectral sequence [64] from reduced Khovanov homology to the Heegaard–
Floer homology of the branched double cover. In comparison, Dowlin has shown that there exists
a spectral sequence from (even) Khovanov homology to knot Floer homology [27]. Also, while
(even) Khovanov homology is well-understood via the representation theory of quantum groups,
odd Khovanov homology is expected to be related to the representation theory of quantum su-
pergroups [25]; see Remark 1.5 for details on this last speculation.

Heuristically, an odd analogue is an algebraic structure demonstrating anti-commutative be-
haviours, with the same graded rank as its even (commutative) counterpart and such that the even
and odd constructions agree when reduced modulo two. The appearance of odd Khovanov ho-
mology sparked interest in finding odd analogues to known categorified and geometric structures
[11, 12, 13, 31, 33, 34, 40, 41, 42, 44, 45, 53, 62], motivated by their relation with (even) Khovanov
homology. Underlying most of these constructions is the notion of a super-2-category [11] (or 2-
supercategory), a certain categorical structure akin to a linear 2-category, where the interchange
law is twisted by the extra data of a Z/2Z-grading, or parity, on the 2Hom-spaces. Diagrammati-
cally, this is pictured as follows:

g′

β

f ′

g

α

f

= (−1)|α|·|β|

g′

β

f ′

g

α

f

Here |α| and |β| denote the respective parities of the 2-morphisms α and β. Note that in particular,
a super-2-category is not a 2-category endowed with extra structure. We call supercategorification
the process of categorifying a category with a super-2-category.

In this article, we show that odd Khovanov homology arises from an odd analogue in categori-
fied representation theory. More precisely, we give a supercategorification SFoamd of a certain
integral and idempotent form Webd of the representation theory of Uq(gl2), such that SFoamd

has the same graded rank as its even counterpart Foamd (Section 2). We then define an invariant
of oriented tangles as a certain tensor product of complexes inSFoamd, and show that it coincides
with odd Khovanov homology when restricted to links (Section 3). Here SFoamd stands for super
gl2-foams, where gl2-foams are certain decorated singular surfaces used in Blanchet’s approach to

1In another direction, symmetric Khovanov homology [68, 70] is yet another categorification of the Jones polyno-
mial.
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Khovanov homology [8]. Our approach can be understood as an odd analogue to his:

Foamd SFoamd

Webd

(even)
Khovanov
homology

odd
Khovanov
homology

Jones
polynomial

⇝
K0 K0 χq χq

In particular, Foamd and SFoamd both categorify the same underlying category Webd, just
as even and odd Khovanov homologies both categorify the Jones polynomial. However, the two
categorifications are structurally of different flavior, as Foamd categorifies while SFoamd su-
percategorifies.

Similarly, the tensor product of complexes should be understood in a super sense. We define
this super tensor product in Section 5; as this is technical (although not conceptually difficult),
we also give a minimal version in Subsection 3.1.1, sufficient for the purpose of Section 3. These
results first appeared in the first author’s Master thesis [75].

The main result of this paper may be summarized as follows:

Slogan: Odd Khovanov homology arises from the super-interplay of two categorified
Kauffman brackets, one even and the other odd, respectively associated to the zip and
unzip foams (see Subsection 1.2.2).

In particular, this gives an extension of odd Khovanov homology to oriented tangles (another
extensionwas given in [61]; see Remark 1.3). This also gives a sign-coherent definition, where signs
naturally arise from the super-2-categorical structure. This contrasts with the original definition,
where signs are fixed in a somehow artificial way on the hypercube of resolutions. We hope that
this new definition will open the way to further connections and applications.

Finally, we relate our construction to higher representation theory (Section 4). More precisely,
we define a supercategorification SSn,d of the q-Schur algebra of level 2, extending the work of
the second author [79]. We then exhibit a super-2-functor

Fn,d : SSn,d → SFoamd,

called the superfoamation functor. In that way, SFoamd is realised as as super-2-representation
of SSn,d. This gives a partial odd analogue to the work of Lauda, Queffelec and Rose [52], who
showed that Foamd can be viewed as a 2-representation of the categorification of Uq(gln) [50,
71] via categorical skew Howe duality.

In this article, we do not address the problem of showing that our super-2-category of gl2-
foams is sufficiently non-degenerate (see Theorem 2.25 for a precise statement), on which most of
our results rely. This is addressed by the first author in [74] (see also the first author’s PhD thesis
[73]) using novel techniques from rewriting theory. In a nutshell, rewriting theory is the algorith-
mic study of presentations of algebraic structures; classical instances include Gröbner bases [14]
and Bergman’s diamond lemma [7]. In the recent years, rewriting theory has started to arise as
a promising tool in higher representation theory, either explicitly [2, 28, 29, 30] or implicitly [5,
38]. In combination with [74], this paper gives the first application of rewriting theory to quantum
topology.
Remark 1.1 (graded-2-categories and covering Khovanov homology). To simplify the exposition,
we restricted this introduction (including the extended summary, Subsection 1.2) to the super, or
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Z/2Z-graded, case. In order to encompass both even and odd Khovanov homology, the rest of the
article considers the more general setting of graded-2-categories. This includes the tensor product
on chain complexes in graded-2-categories.

Hence, Section 2 actually defines a graded-2-category of gl2-foams GFoamd, defined over
a ring k with distinguished elements X , Y and Z such that X2 = Y 2 = 1 (Definition 2.15).
Choosing X = Y = Z = 1 recovers the even case, while choosing X = Z = 1 and Y = −1
recovers the odd case.

Foamd SFoamd

Webd

GFoamd

(even)
Khovanov
homology

odd
Khovanov
homology

Jones
polynomial

covering
Khovanov
homology

⇝

K0 K0

X = Z = 1
and Y = 1

X = Z = 1
and Y = −1

χq χq

Finally, leaving X , Y and Z as formal parameters recovers covering Khovanov homology [66].
Remark 1.2 (not even Khovanov homology). In [79], the second author defined a homological
tangle invariant called “not even Khovanov homology”1. Our construction is a foamy analogue
of [79]; in particular, it follows from our result that not even Khovanov homology coincides with
odd Khovanov homology when restricted to links, as was conjectured in [79].

The following remarks discuss related open problems. The remaining of the introduction pro-
vides an extended summary of the paper, with extra historical and motivational notes. We suggest
the casual reader to start there (Subsection 1.2).
Remark 1.3 (connections with odd arc algebras). In [61], Naisse and Putyra gave another extension
of odd Khovanov homology to tangles based on arc algebras, building on previous work of Putyra
[66] and Naisse–Vaz [62]. They conjectured that their tangle invariant coincides with the one in
[79]. Following their conjecture and the previous remark, Naisse and Putyra’s construction should
coincide with our tangle invariant. This remains an open question. See also the introduction of
Section 4 for further connections with their work.
Remark 1.4 (other odd link homologies). At present, there is no known odd analogues for gln-
Khovanov homologies [51] outside of the case n = 2. In the foamy construction of these homolo-
gies [48, 57], the nth power of the dot is zero: (dot)n = 0. On the other hand, if one imposes
the dot to be odd, then (dot)2 = −(dot)2, and at least if 2 is invertible in the ground ring, this
implies that (dot)2 = 0. This gives an obstruction to a naive construction of odd gln-Khovanov
homology when n ≥ 3. However, it may be that gln is not the correct direction to look at; see the
next remark.
Remark 1.5 (connections with super Lie theory). Supercategorification is known to be related to
super Lie theory. For instance, consider the case of sl2, associated with the Cartan datum consist-
ing of a single vertex. The Lie superalgebra osp1|2 similarly arises from the Cartan super datum
consisting of a single odd vertex. Hill and Wang introduced in [43] (see also the series of papers
[19, 22, 23, 24, 25, 26]) a covering quantum group Uq,π(sl2) defined over Q(q)[π](π2− 1), such that
setting π = 1 recovers Uq(sl2) while setting π = −1 recovers Uq(osp1|2). On the other hand,
Ellis and Lauda [41] constructed a supercategorification of Uq,π(sl2), later reformulated (and ex-
tended to other super Cartan data) by Brundan and Ellis [12] (see also the beginning of Section 4

1This definition relied on the existence of a suitable super tensor product, which is the content of Section 5.
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for further references). Given those interactions, it was thought that an odd homology should
correspond to a covering quantum group (resp. a Lie superalgebra), with odd Khovanov homology
corresponding to Uq,π(sl2) (resp. osp1|2). However, an explicit connection between odd Khovanov
homology and osp1|2 remains an open problem (see however [21, 32]). We expect that a further
careful study of our construction will lead to such a connection.

Let us also note that under some assumptions [43], the only Lie superalgebras in finite type are
the osp1|2n Lie superalgebras. This suggests that an odd so2n+1-link homology should exist. This
is further corroborated by the work of Mikhaylov and Witten [60] on link homologies associated
to so2n+1, where the sl2 ∼= so3 case is conjectured to coincide with odd Khovanov homology. See
also [41] for a discussion.
Remark 1.6 (connections with supercategorified quantum groups). While Section 4 gives a super-
categorification (denoted SSn,d) of the q-Schur algebra of level 2 (denoted Ṡn,d), it does not give a
supercategorification of the algebra map Uq(gln)→ Ṡn,d. Indeed, while there exists a conjectural
(even) categorification of Uq(gln) [58], there is, at the time of writing, not even a candidate for a
supercategorification of Uq(gln). Relating SSn,d to supercategorified quantum groups [12] (also
known as super Kac–Moody 2-categories) remains an interesting open problem. See the previous
two remarks for related comments.
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1.2 Extended summary

1.2.1 What is odd Khovanov homology?

The original construction of Khovanov homology consists in introducing a hypercube of resolutions
associated with every link diagram, using a suitable 2-dimensional TQFT to algebraize the hyper-
cube, and turning the hypercube into a chain complex by assigning signs to its edges following
the Koszul rule. In that case, the commutative Frobenius algebra associated with the TQFT is the
algebra Z[x]/x2.

Odd Khovanov homology is constructed similarly, onlywith the exterior algebra∧(x1, . . . , xn)
taking the role of Z[x1, . . . , xn]/(x21, . . . , x

2
n). Of course, the exterior algebra is not a commutative

Frobenius algebra, and so the associated TQFT is only a projective TQFT in the sense that it is only
functorial up to signs. Somehowmiraculously, it was shown in [65] that this defect in functoriality
can be balanced out when assigning signs to the hypercube. This requires a much more artifical
sign assignment than the Koszul rule, based on a case-by-case analysis of possible squares in the
hypercube.

As the anti-commutativity in the exterior algebra is controlled by a Z/2Z-grading, it is natural
to wonder whether one could give a construction of odd Khovanov homology using a super-2-
category. Ideally, the superstructure would control all signs appearing in odd Khovanov homology,
that is, all interchanges of saddles. One solution, pursued by Putyra [66], is to pull back the TQFT
to linear relations on cobordisms. This provides a partial analogue for odd Khovanov homology of
Bar-Natan’s “picture-world” construction of (even) Khovanov homology. In this context, a merge
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is even and a split is odd:

reading
direction

even odd

However, the superstructure only partially controls interchanges of saddles, and one still needs to
use the artifical sign assignment from the original construction. Also, and contrary to Bar-Natan’s
approach to Khovanov homology, it does not generalize in an obvious way to tangles—indeed,
whether a saddle is a split or a merge is a global property. See however [61] for an answer to this
question using an odd analogue to arc algebras.

This suggests that one should look further away from the original construction. Heuristically,
it is plausible that different choices of TQFTs, identical up to signs, lead to the same invariant.
After all, this is the take-home message of odd Khovanov homology: sign issues on the level of
the TQFT can be balanced out when choosing a sign assignment on the hypercube. In this article,
we show that a solution is given by super gl2-foams.

1.2.2 Super gl2-foams

An important early-day problem on Khovanov homology was also about signs. Namely, Kho-
vanov’s original construction is not properly functorial under link cobordisms, but only so up to
signs. Solutions to this problem were provided by numerous authors [15, 20, 72, 80]. A solution
introduced by Blanchet [8] used foams, certain decorated singular surfaces first introduced by Kho-
vanov in his definition of sl3-Khovanov homology [48] and generalized to gln for n ≥ 3 in [57].
Adapting this construction to the n = 2 case, Blanchet defined a functorial version of Khovanov
homology using gl2-foams.1 The proof of functoriality was later generalized to all gln-link homolo-
gies in [37]. In practice, working with gl2 instead of sl2 leads to better-behaved constructions. This
comes down to the fact that in the former case, the fundamental representations

∧0(C(q)2) and∧2(C(q)2) are not isomorphic, and keeping track of this distinction leads to better control on signs
(see [52, Section 1F] for a discussion).

As it turns out, the same heuristics give control on signs in odd Khovanov homology. One
needs to work with gl2-foams equipped with a sort of Morse decomposition, in the sense that they
decompose into a composition of the following local pictures:

dot cup cap zip unzip

odd odd even even odd

Assigning parities to these local pictures turns a gl2-foam into a super gl2-foam. The super-2-
category SFoamd is generated by linear combination of super gl2-foams modulo relations, some

1Blanchet called them enhanced sl2-foams, but as they were later understood to be related to gl2 rather than sl2, we
call them gl2-foams.
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of which encoding super isotopies (see Fig. 2.2 in the text, settingX = Z = 1 and Y = −1). Note
that (super) gl2-foams can be decorated with dots: in the super case, this dot is odd, as the variable
xi in the exterior algebra ∧(x1, . . . , xn).

Boundaries of (super) gl2-foams are certain trivalent graphs called webs (or spider webs). Their
edges have a thickness and . They provide an integral formWebd for intertwiners of fun-
damental representation of Uq(gl2) [17]: in this correspondence, corresponds to the standard
representation C(q)2 and to the determinant representation

∧2(C(q)2).

Main theorem A (see Section 2). There exists a Z-graded super-2-category SFoamd which super-
categorifies the Z[q, q−1]-linear categoryWebd.

1.2.3 Odd Khovanov homology is a super tensor product of chain complexes

Once given the super-2-category of super gl2-foams, defining a homological invariant of oriented
tangles is straightforward in most aspects. It follows the usual scheme of a categorified Kauffman
bracket [4]: we assign length-two complexes to positive and negative crossings and take an appro-
priate tensor product (more precisely, a horizontal composition). The differentials are respectively
given by the even saddle (zip) and the odd saddle (unzip):

7→ qt−1 −−−−−−−−→

7→ qt−1 −−−−−−−−→

Here q denotes a shift in quantum grading, and t indicates the homological grading. A similar
assignment can be defined for cups and caps; see Subsection 3.1.2 for details. Taking super ten-
sor product of chain complexes and renormalizing, this assigns a complex to every sliced tangle
diagram. Its homotopy type is shown to be an invariant of the associated oriented tangle (Theo-
rem 3.2).

The only step requiring extrawork is the last step: taking an appropriate tensor product. This is
done in Section 5 for a subclass of chain complexes called polyhomogeneous complexes. A homoge-
neous complex is a chain complex in a super-2-category such that each differential is homogeneous
(although the parity can differ at distinct homological degrees), and a polyhomogeneous complex
is a tensor product of homogeneous complexes. This tensor product is coherent with homotopies
in the following sense:

Main theoremB (Theorem 5.13). In any super-2-category, there exists a well-defined tensor product
on polyhomogeneous complexes such that if A•

1 and A
•
2 (resp. B

•
1 and B•

2 ) are homotopic polyhomo-
geneous complexes, then so are A•

1 ⊗B•
1 and A•

2 ⊗B•
2 .

If all differentials are even, this recovers the usual Koszul rule for chain complexes in linear 2-
categories. Here the notion of homotopy equivalence is the usual notion of homotopy equivalence.
Indeed, a polyhomogeneous complex is a genuine chain complex; it is only when taking tensor
product that its “super nature” plays a role.

In Section 3, we detail the construction of a tangle invariant using super gl2-foams and show
the following theorem, which is the main result of this paper:
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Main theorem C (Theorem 3.4). Our construction coincides with odd Khovanov homology when
restricted to links.

1.2.4 Skew Howe duality

Let Cq := C(q), and consider the space
∧d(Cn

q ⊗ C2
q) equipped with the actions of Uq(gln) and

Uq(gl2). These actions commute, and in fact describe each other intertwiners. This fact is known as
skew Howe duality, and was used (generalizing from gl2 to glk) by Cautis, Kamnitzer and Morisson
to describe Uq(glk)-intertwiners on fundamental representations by generators and relations [17].
In particular, the map

ϕ : Uq(gln)→ EndUq(gl2)

(∧d(Cn
q ⊗ C2

q)
)

is surjective. Taking the quotient by the kernel of this action defines the q-Schur algebra of level 2:

Sn,d := Uq(gln)/ kerϕ
∼= EndUq(gl2)

(∧d(Cn
q ⊗ C2

q)
)
.

While the above isomorphism holds over C(q), the two sides have distinct interpretations, and
hence distinct natural choice of integral and idempotent forms. On the one hand, Uq(gl2)-inter-
twiners of fundamental representations are generated by the following intertwiners:

∧2(C2
q) ∧1(C2

q)

∧1(C2
q)

⊗

v1 ⊗ v2v1 ∧ v2 7→

∧2(C2
q)∧1(C2

q)

∧1(C2
q)

⊗

v1 ∧ v2qv1 ⊗ v2 − v2 ⊗ v1 7→
These are the (spider) webs discussed before, leading to the integral and idempotent form Webd

(recall that a small linear category is the same data as an algebra with a choice of orthogonal
idempotents). On the other hand,Uq(gln) admits an integral and idempotent form denoted U̇q(gln)
(the Luzstig’s idempotent form), which also provides an integral and idempotent form Ṡn,d for the
q-Schur algebra of level 2. Switching back to the categorical terminology, these Z[q, q−1]-linear
categories are related by Z[q, q−1]-linear functors:

U̇q(gln)→ Ṡn,d →Webd.

The relationship between Ṡn,d andWebd is diagrammatically described by so-called ladder webs;
see [17] for details.

1.2.5 A supercategorification of the q-Schur algebra of level 2

As shown by Lauda, Queffelec and Rose, skew Howe duality can be categorified:

U(gln) Sn,d Foamd

U̇q(gln) Ṡn,d Webd

K0 K0 K0

The top arrows are 2-functors, U(gln) is the categorified quantum gln as introduced by Khovanov–
Lauda and Rouquier [49, 71], and Sn,d is the 2-Schur algebra as introduced byMackaay–Stošić–Vaz
[58]. The composition of the two top arrows is called the foamation 2-functor in [52], exhibiting
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Foamd as a 2-representation of U(gln). In that sense, it provides a higher representation theoretic
understanding of Khovanov homology. As this 2-representation factors through Sn,d, we may
equivalently view Foamd as a 2-representation of Sn,d, and define the foamation 2-functor as the
2-functor Sn,d → Foamd.

In Section 4, we give an odd analogue of this latter result. In [79], the second author defined a
superalgebra which can be seen as an odd analogue of the KLR algebra [50, 71] of level 2 for the
An quiver. Taking a cyclotomic quotient of this construction leads to a supercategorification of the
negative half of the q-Schur algebra of level 2. In Section 4, we extend it to a supercategorification
of the q-Schur algebra of the level 2, giving an odd analogue of [58] in the level 2 case. We then
define a superfoamation 2-functor, fitting into the following commutative square:

SSn,d SFoamd

Ṡn,d Webd

K0 K0

In a nutshell:

Main theoremD. The supercategorification of the q-Schur algebra of level 2 together with the super
foamation 2-functor provides a representation theoretic construction of odd Khovanov homology.

2 Graded gl2-foams

This section defines the graded-2-category GFoamd of graded gl2-foams that categorifies the
category Webd of gl2-webs. This can be viewed as a graded analogue of gl2-foams à la Blanchet
[8]. See also [6, 35, 36] for further studies of gl2-foams. More precisely, the graded-2-category
GFoamd gives a graded analogue of the category of directed gl2-foams as defined in [67] (see
Remark 2.20).

Subsection 2.1 defines the notion of graded-2-categories. The categoryWebd and the graded-
2-category GFoamd are then respectively defined in Subsections 2.2 and 2.3. In Subsection 2.4,
we define a string diagrammatics for graded gl2-foams; see also [73, 74] for another diagrammatics
using shadings. This gives a computation-friendly counterpart of the topological definition given
in Subsection 2.3. Finally, Subsection 2.6 shows that GFoamd categorifies Webd, relying on the
main result of [74].

2.1 Graded-2-categories

Wedefine the notion of graded-2-categories to allow gradingswith generic abelian1 groups. Taking
this abelian group to be Z/2Z recovers the notion of super-2-categories [12]. A related definition
appeared in [66] in the context of algebras, under the name of chronological algebras. See also [11]
for an in-depth study of superstructures, including non-strict versions. Our exposition is a direct
generalization to the graded case of the exposition given in [12] for super-2-categories (which they
call 2-supercategories).

Throughout the section we fix an abelian groupG and a unital commutative ring k. We denote
k× the abelian group of invertible elements in k equipped with the multiplicative structure. We
also fix a k×-valued pairing on G, that is a Z-bilinear map

µ : G×G→ k×.
1We take groups to be abelian for simplicity; this article does not investigate the case of more general groups.
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Definition 2.1. A pairing µ is symmetric if µ(g, h)µ(h, g) = 1 for all g, h ∈ G.

For completeness, this section does not assume µ to be symmetric. However, every example
considered in this article will be for µ symmetric; furthermore, Section 5 is stated for µ symmetric,
for simplicity. Note that µ is automatically symmetric in the super case G = Z/2Z.

Recall that a k-module V is said to be G-graded if it is equipped with the data of a direct sum
decomposition V =

⊕
g∈G Vg . If v ∈ Vg for some g ∈ G, the vector v is said to be homogeneous; if

furthermore v ̸= 0, it has degree g, which we write as deg(v) = g. Note that while the zero vector
is homogeneous, it does not have a well-defined degree.

The hom-spaceHomk(V,W ) between twoG-gradedk-modules inherits a structure ofG-graded
k-module, stating that a non-zero k-linear map

f :
⊕
g∈G

Vg →
⊕
g∈G

Wg

is of degree deg f = h if f(Vg) ⊂ Wg+h for all g ∈ G. If f = 0 or if deg f = 0, we say that f is
degree-preserving.

Denote by k-ModG the category of G-graded k-modules, and by k-Mod0G the wide subcat-
egory1 of k-ModG consisting only of degree-preserving k-linear maps. The category k-ModG
admits a standard monoidal structure, defined on objects V =

⊕
g∈G Vg andW =

⊕
g∈GWg by

the formula
(V ⊗W )g =

⊕
(g1,g2)∈G×G

g1+g2=g

Vg1 ⊗k Wg2 ,

and on morphisms f and g by the formula (f ⊗ g)(v⊗w) = f(v)⊗ f(w). However, one can give
an alternative definition using the data of the grading and the bilinear form µ:

Definition 2.2. The (G,µ)-graded tensor product is defined on objects as V ⊗G,µ W := V ⊗W
and on morphisms following the Koszul rule associated to µ:

(f ⊗G,µ g)(v ⊗G,µ w) = µ(deg v,deg g)f(v)⊗G,µ g(w).

Equipped with this graded tensor product, k-ModG is not in general a monoidal category.
Indeed, morphisms respect the following graded interchange law:

(f ⊗G,µ g) ◦ (h⊗G,µ k) = µ(deg g,deg h)(f ◦ h)⊗G,µ (g ◦ k). (1)

We now define the proper categorical structures that encompass this behaviour.

Definition 2.3. A G-graded k-linear category is a (k-Mod0G,⊗)-enriched category. A G-graded
k-linear functor is a (k-Mod0G,⊗)-enriched functor.

In other words, a G-graded k-linear category is a category such that each Hom is a G-graded
k-module, and such that composition is k-bilinear and preserves the grading in the sense that
deg(f ◦ g) = deg f + deg g. A G-graded k-linear functor is a functor between two G-graded
k-linear categories that restricts to a degree-preserving G-graded k-linear map on Homspaces.

Denote by k-CatG the category of small G-graded k-linear categories and G-graded k-linear
functors. ForA and B twoG-graded k-linear categories, their (G,µ)-graded-cartesian tensor prod-
uct is the G-graded k-linear category A⊠G,µ B such that ob(A⊠G,µ B) := ob(A)× ob(B) and

HomA⊠G,µB((a, b), (c, d)) := HomA(a, c)⊗G,µ HomB(b, d).

1Recall that a subcategory is said to be wide if it contains all objects.
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Most importantly, the composition inA⊠G,µB is given by the graded interchange relation (1). This
makes A⊠G,µ B a G-graded k-linear category. Moreover, one can check that ⊠G,µ is associative
and unital, giving k-CatG the structure of a monoidal category.

Definition 2.4. A (G,µ)-graded-2-category is a k-CatG-enriched category. A (G,µ)-graded-2-
functor is a k-CatG-enriched functor.

In particular:

Definition 2.5. A (G,µ)-graded-monoidal category is a G-graded k-linear category C together
with the data of a unit object and a unital and associativeG-gradedk-linear functor⊗G,µ : C ⊠G,µ C →
C.

For instance, the (G,µ)-graded tensor product from Definition 2.2 assembles into a G-graded
k-linear functor

⊗G,µ : k-ModG ⊠G,µ k-ModG → k-ModG,

making (k-ModG,⊗G,µ) a (G,µ)-graded-monoidal category. (More precisely, we should con-
sider the strictification of k-ModG, where ⊗G,µ has strict associativity and unitality.) Note that
(k-ModG,⊗G,µ) is not a linear monoidal category with an extra G-grading; indeed, the inter-
change law (1) holds only “up to scalars”. In general, a (G,µ)-graded-2-category is not a linear
2-category with extra structure. Indeed, the G-grading interacts with the 2-categorical structure,
twisting the interchange law. However, any 2-category that is both k-linear and G-graded as a
k-linear 2-category can be seen as a (G,µ)-graded-2-category, with µ the trivial map.
Remark 2.6. Graded-2-categories are closely related to Gray categories, certain 3-dimensional cat-
egorical structures where the interchange law for 2-morphisms holds weakly. We use this point
of view in [74] (see also [73]) to develop a rewriting theory suitable for graded-2-categories.
Remark 2.7. If µ is symmetric, the monoidal category (k-Mod0G,⊗) has as symmetric structure
given by v ⊗ w 7→ µ(deg(v),deg(w))w ⊗ v. In general, if V is a symmetric monoidal category,
then V-Cat, the category of small V-enriched categories and V-enriched functors, is itself sym-
metric monoidal (see e.g. [9, Proposition 6.2.9]). This allows an inductive definition of V-enriched
n-categories. In that general framework, (G,µ)-graded-2-categories are precisely (k-Mod0G)-
enriched 2-categories.

2.1.1 Diagrammatics

Let C be a (G,µ)-graded-2-category. Unpacking Definition 2.4, C consists of objects C0 together
with a G-graded k-linear category C(a, b) for each pair of objects (a, b). We denote C1(a, b)
its objects and for f, g ∈ C1(a, b), we denote C2(f, g) the Hom-space of morphisms from f to
g. Elements of C1(a, b) and C2(f, g) are respectively called 1-morphisms and 2-morphisms. A
2-morphism α ∈ C2(f, g) can be pictured using string diagrams, akin to the string diagrammatics
of 2-categories:

g

α

f

ab
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The vertical composition ⋆1 denotes all the compositions in the G-graded k-linear categories
C(a, b). It is pictured by stacking the 2-morphisms atop each other:

h

β
g
α

f

ab :=


h

β

g

ab

 ⋆1


g

α

f

ab


The horizontal composition ⋆1 comes from the enrichment. It is pictured by putting the two 2-mor-
phisms side-by-side:

g′

β

f ′

g

α

f

ac :=


g′

β

f ′

bc

 ⋆0


g

α

f

ab


To avoid clutter, we leave regions and lines unlabelled for now. The rule “compose first horizon-
tally, then vertically” resolves the ambiguity for the order of compositions:

γ

δ

α

β
:= (δ ⋆0 β) ⋆1 (γ ⋆0 α)

Contrary to 2-categories, it is in general not the same as “compose first vertically, then horizon-
tally”. Indeed, in a graded-2-category sliding a 2-morphism past another vertically comes at the
price of an invertible scalar. This is the graded interchange law:

β α =
β

α
= µ(deg β,degα)

β

α
(2)

In particular, one must be careful with the relative vertical positions of 2-morphisms. To avoid
confusion, in this article we always draw string diagrams such that no non-trivially graded two
2-morphisms lie on the same vertical level. Trivially graded 2-morphisms can safely be drawn at
the same vertical level, as those can slide vertically without adding scalars. Finally, as customary
already in the string diagrammatics of 2-categories, we usually do not picture identities.

If µ is symmetric (Definition 2.1), the scalar appearing in the graded interchange law depends
only on the relative vertical positions of the 2-morphisms:

α

β
= µ(deg β,degα)

α

β
if µ is symmetric.

Compare with Eq. (2). In other words, passing β down α always adds the scalar µ(deg β,degα),
regardless of their respective horizontal positions.

2.1.2 Grothendieck ring

Let C be a (G,µ)-graded-2-category equipped with an extra H-grading, where H is an abelian
group. In this subsection, we define the Grothendieck ring of C with respect to H , denoted
K0(C)|H . This is analogous to the usual notion of Grothendieck ring for an H-graded linear
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2-category. Crucially, we consider the H-grading as independent of the G-grading, at least on a
formal level; this implies that taking H-envelopes does not affect the (G,µ)-graded interchange
law.

In the reminder of the article, we will deal with H-graded (G,µ)-graded-2-categories where
G = Z × Z and H = Z. In this context, the H-grading is called the “quantum grading”, and we
write

K0(C)|q := K0(C)|H .

1-dimensional case: H-graded categories

We review some basic notions; see also [39, chap. 11].
Let H be an abelian group. An H-graded category is a category enriched over H-graded abelian
groups. If H = {∗} is the trivial group, the category is said to be pre-additive. A pre-additive
category C is a category with H-shifts if it is equipped with a group morphism H → Aut(C)
where Aut(C) is the group of invertible endofunctors; that is, C is equipped with an action ofH
by autofunctors. We denote f{x} the action of x ∈ H on an object f ∈ ob(C). WhenH = Z, we
also write qnf := f{n}.

Let C be a pre-additive category. The category C naturally embeds in an additive category
C⊕, its additive closure. Objects in C⊕ are formal direct sums of objects in C , and morphisms are
matrices whose entries are morphisms in C . If C is a category with H-shifts, then so is C⊕ by
extending the H-action additively.

Let C be an additive category. The (split) Grothendieck ring of C is the abelian group K0(C)
generated by elements [f ] for each object f ∈ ob(C), and subject to the relations [f⊕g] = [f ]+[g];
in particular, if f ∼= g then [f ] = [g]. If C is with H-shifts, then K0(C) has the structure of a
Z[H]-module, where the H-action is given by x ·H [f ] := [f{x}].

Let C be a pre-additive category. The Grothendieck ring of C is the Grothendieck ring of its
additive closure: K0(C) := K0(C

⊕).

Let C be an H-graded category. The H-envelope of C is the category CH whose objects are
formal H-shifts f{x}, where x ∈ H and f ∈ ob(C), and there is a morphism

α : f{x} → g{y}

in CH for each morphism α : f → g in C and each pair of elements x, y ∈ H . If degH α denotes
the H-degree of α, we set degH (α : f{x} → g{y}) = degH α − x + y. The H-envelope is both
H-graded and with H-shifts.

Let C be an H-graded category. The underlying category of C is the category C consisting
of degree-preserving morphisms. The H-shifted closure of C , denoted by CH , is the underlying
category of its H-envelope; note that it has H-shifts. Finally, the H-Grothendieck ring of C is the
Grothendieck ring of its H-shifted closure CH :

K0(C)|H := K0(CH) = K0((CH)⊕).

As before, the H-Grothendieck ring is a Z[H]-module.

All of the above extend to the case where C is an (G × H)-graded category, ignoring the
G-grading throughout. Note that the H-envelope is canonically G-graded, setting

degG (α : f{x} → g{y}) = degG α.
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2-dimensional case: H-graded (G,µ)-graded-2-categories
Let C be a (G,µ)-graded-2-category and H an abelian group. We say that C is additive if each
hom-category C(a, b) is additive and horizontal composition is bilinear. We say that C is with
H-shifts if it is equipped with an action of H by automorphisms which is the identity on objects.
In particular, for each pair of objects a, b ∈ ob(C) the G-graded category C(a, b) is withH-shifts.
Its Grothendieck ring is theZ[H]-linear category obtained by taking the Grothendieck ring of each
hom-categories C(a, b), and inducing a bilinear composition by setting [f ] ◦ [g] := [f ⋆0 g].

Let C be an H-graded (G,µ)-graded-2-category. The H-envelope of C is the (G,µ)-graded-
2-category with H-shifts defined by taking the H-envelope of each hom-category C(a, b). The
underlying linear 2-category of C is the sub-2-category C obtained by taking the underlying cate-
gory of each hom-category C(a, b). Notions of H-shifted closure and additive closure are defined
analogously to the 1-dimensional case. Finally:
Definition 2.8. Let C be an H-graded (G,µ)-graded-2-category. Its H-Grothendieck ring is the
Grothendieck ring of the additive closure of its H-shifted closure:

K0(C)|H := K0((CH)⊕).

The H-Grothendieck ring is a Z[H]-linear category.

Remark 2.9. One could give a more general definition, choosing to decategorify with respect to
the G-grading as well, and not only some (formally) distinct H-grading. This generalizes the no-
tion of Grothendieck ring for super-2-categories given in [11, Definition 1.16]. The main difficulty
lies in properly defining the horizontal composition in the G-envelope, ensuring that the graded
interchange law holds. For completeness and future reference, we give below the definition of the
horizontal composition in the G-envelope of a (G,µ)-graded-2-category, following the conven-
tions of [11]:

α

y

x

⋆0 β

w

z

= µ(−x,degG β − z + w)µ(degG α,w) α β

y + w

x+ z

2.2 gl2-webs

In our context, a gl2-web is a certain trivalent graph, smoothly embedded in R × [0, 1], that we
view as a morphism in a certain category defined below. Objects, called weights, are elements of
the following set:

Λd :=
⊔
k∈N

{λ ∈ {1, 2}k | λ1 + . . .+ λk = d}. (3)

For each λ ∈ Λd with k coordinates, we can define a label on its coordinates

lλ : {1, . . . , k} → {1, . . . , d}

by setting lλ(i) =
∑

j<i λi+1. For instance, l(1,1,2,1) = (1, 2, 3, 5). Foreseeing the string diagram-
matics, we call this label the colour of the coordinate. The identity web of a weight is pictured as
a juxtaposition of straight vertical lines in R× [0, 1], decorated as single (black) or double (orange)
lines:

id(1,1,2,1) =

1

2

3

5

1

1

2

1

1

1

2

1

R× {0}R× {1}

R
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Note that we read webs from right to left. Note also that each line has a colour, given by the colour
of the corresponding coordinate (this colour is unrelated to whether the line is pictured “black”
or “orange”). Effectively, the colour of a line counts the number of preceding lines (plus one),
counting twice double lines. A generic gl2-web is either an identity web or a composition of the
following generating webs:

Wi,− =
i

i

i+ 1

...

...
and Wi,+ =

i

i

i+ 1

...

...

Hereabove the dots denote possibly additional vertical single or double lines, and composition is
given by stacking webs atop each other (reading from right to left). Note that a web W has an
underlying unoriented flat tangle diagram, denoted sl(W ), given by forgetting the double lines
and the orientations.
Remark 2.10 (Orientation). Our webs are given an orientation “flowing” from R×{0} to R×{1},
which is more restrictive than some definitions in the literature. Such webs are sometimes called
acyclic or left-directed (e.g. in [67]). As this orientation is canonical, we often omit it.

Definition 2.11. The categoryWebd has objects Λd, and morphisms are Z[q, q−1]-linear combina-
tions of gl2-webs, up to the following web relations:

Wi,s1Wj,s2 =Wj,s2Wi,s1

(for all s1, s2 ∈ {−,+} and |i− j| > 1)
interchange
relations

= (q + q−1) circle
evaluation

= and =
isotopies of flat
tangle diagrams

We shall need the following notion:

Definition 2.12. A spatial isotopy1 of flat tangle diagrams is a usual isotopy with the addition of
the following spatial move:

∼

The relations in Webd fully capture the spatial isotopy classes of the underlying flat tangle
diagrams, in the sense of the following lemma.

Lemma 2.13. LetW andW ′ be two gl2-webs with the same domain and codomain. ThenW and
W ′ are equal inWebd if and only if there exists a spatial isotopy between their underlying flat tangle
diagrams sl(W ) and sl(W ′).

Using relations in Definition 2.11, any closed strand in sl(W ) evaluates to q + q−1 in W .
Moreover, if sl(W ) does not have any closed strand, then the last two relations in Definition 2.11
are enough to capture all isotopies of sl(W ). These two facts essentially constitute the proof of
Lemma 2.13; a formal proof can be found in the first’s author PhD thesis [73, subsubsection 6.6.3].

2.3 Graded gl2-foams

1The terminology is taken from [77].
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[0, 1]

[0, 1]
R

i

i
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Figure 2.1: Local model for foams.

Foams provide a suitable notion of cobordisms between webs.
They are certain singular surfaces locally modelled on the
product of the interval [0, 1] with the letter “Y” (see Fig. 2.1),
embedded in (R × [0, 1]) × [0, 1]. In Fig. 2.1, R is pictured
from front to back, while the last interval is pictured from
bottom to top. In this context, we refer to the singular curves
as seams, and call facets the components of the complement
of the set of seams. Facets have a thickness, either single or
double, and we refer to them respectively as 1-facets (or sin-
gle facets, shaded blue) and 2-facets (or double facets, shaded
orange). We refer to cross-sections as cross-sections of the pro-
jection π : (R×[0, 1])×[0, 1]→ [0, 1] onto the last coordinate
(pictured vertically).

Definition 2.14. A graded gl2-foam, or simply foam, is a topological singular surface embedded in
(R× [0, 1])× [0, 1], such that generic cross-sections are webs and all non-generic cross-sections respect
one the following local behaviours:

dot cup cap zip unzip

(1, 1) (0,−1) (−1, 0) (1, 0) (0, 1)

where the axes are oriented as in Fig. 2.1. Each such local behaviour F is endowed with a Z2-degree
degZ2(F ), denoted below the associated picture. Extending additively, this induces a Z2-grading on
graded gl2-foams.

We call the above local behaviours generating foams, or simply generators. A graded gl2-foam
F ⊂ (R × [0, 1]) × [0, 1] is viewed as a morphism from the web F ∩ π−1({0}) to the web F ∩
π−1({1}), reading from bottom to top (recall that π is the projection onto the third coordinate):

dot cup cap zip unzip

id(1) → id(1) id(2) →W+W− W+W− → id(2) id(1,1) →W−W+ W−W+ → id(1,1)

The dot in the first picture of Definition 2.14 is a formal decoration that any 1-facet may carry.
By removing the 2-facets, a foam F has an underlying surface, denoted sl(F ). We assume that
sl(F ) is smooth and that the vertical projection π defines a separative Morse function for sl(F ),
considering dots as critical points. Note that the local behaviours in Definition 2.14 dictate the
local behaviours around critical points of π. Because π is separative, each such local behaviour
lies on a distinct vertical position.

The facets of a foam F admit a canonical orientation, induced by the canonical orientation on
the web F ∩π−1({0}). That is, we endow the facets incident to F ∩π−1({0})with an orientation
compatible with the canonical orientation of F ∩π−1({0}), and extend globally with the condition
that at a given seam, the orientation induced by the 2-facet is opposite to the orientation induced
by the two 1-facets (see Fig. 2.1). In particular, the facets incident to F ∩ π−1({1}) induce an
orientation on F ∩ π−1({1}) opposite to its canonical orientation. Similarly, facets are endowed
with a colour induced by the colour on webs; see also the string diagrammatics in Subsection 2.4.
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This also defines an orientation and colour on each seam, induced from the orientation and colour
of its incident 2-facet.

As in the non-graded case, wewill consider graded gl2-foams up to isotopies. In our context, an
isotopy is a boundary-preserving isotopy which generically preserves the cross-section condition
in Definition 2.16. Sliding a dot along its 1-facet is also considered as an isotopy. Moreover, we
assume that the restriction of an isotopy to the underlying surface is a diffeotopy.

We distinguish different kinds of isotopies, in analogy with the property of the corresponding
diffeotopy for the underlying surface:

• If the isotopy preserves the relative vertical positions of the generating foams, we say that
it is a Morse-preserving isotopy.

• If the isotopy only interchanges the vertical positions of generating foams, we say that it is
a Morse-singular isotopy.

• If the isotopy is such that the underlying diffeotopy is a birth-death diffeotopy,1 we say that
the isotopy is a birth-death isotopy.

We refer to [66] for relevant details on Morse theory.
In the graded case, isotopies only hold up to invertible scalars. Some are controlled by a graded-

2-categorical structure:

Definition 2.15. Let k be a commutative ring together with three invertible elements X , Y and Z
in k× such that X2 = Y 2 = 1. Given this data, let µ be the following bilinear form for the abelian
group G := Z2:

µ : Z2 × Z2 → k×,
((a, b), (c, d)) 7→ XacY bdZad−bc.

Note that µ is symmetric in the sense of Definition 2.1. They are three standard choices for k
and elements X , Y and Z :

• even case: leave k arbitrary and choose X = Y = Z = 1. This recovers (even) gl2-foams
with coefficients in k (see Remark 2.20).

• odd case: leave k arbitrary and chooseX = Z = 1 and Y = −1. This defines so-called super
gl2-foams (with coefficients in k), as described in the introduction. One could also choose
Y = Z = 1 and X = −1, leading to an essentially identical theory.

• graded case: X , Y and Z are formal parameters. More precisely, choose another commuta-
tive ring k and set k := k[X,Y, Z]/(X2 = Y 2 = 1).

In what follows, we will often say that we “choose X = Y = Z = 1” or “choose X = Z = 1 and
Y = −1” to mean that we consider the even or the odd case, respectively.

Definition 2.16. GFoamd is the (Z2, µ)-graded-2-category whose objects are elements ofΛd, whose
1-morphisms are gl2-webs and whose 2-morphisms are k-linear combinations of graded gl2-foams,
regarded up to the following relations:

1That is, collapsing the two singularities associated to a saddle and a cup or cap by “smoothing out” the surface, or
the converse; see the zigzag relations in Fig. 2.2 for the underlying surfaces.
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(i) If φ : F1 → F2 is a Morse-preserving isotopy, then F1 = F2 inGFoamd.

(ii) If φ : F1 → F2 is a Morse-singular isotopy interchanging the vertical positions of exactly
two critical points p and q, with p vertically above q in F1, then F1 = µ(deg p,deg q)F2

in GFoamd.

(iii) All the local relations in Fig. 2.2 below.

Remark 2.17. The Z2-grading induces a Z-grading on graded gl2-foams, the quantum grading (or
q-grading). If q : Z2 → Z denotes the map q(a, b) = a+ b, we set for each foam F :

qdeg(F ) := q(degZ2(F )).

Note that while symmetry with respect to the horizontal plane does not preserve the Z2-grading,
it does preserve the quantum grading. Topologically, the quantum grading is given by

qdeg(F ) = 2#{dots} − e(sl(F )),

where#{dots} is the number of dots and e is the Euler measure, viewing sl(F ) as a surface with
acute right-angled corners. (Recall that the Euler measure of a surface S with Euler characteristic
χ(S) and with k acute right-angled corners is e(S) := χ(S) − k/4; see e.g. [54].) The Euler
measure is additive under disjoint union and gluing of surfaces with corners, in accordance with
the additivity of the quantum grading.

Following Subsection 2.1.2, we write (GFoamd)
⊕
q
the additive q-shifted closure of GFoam:

it allows formal shifts of webs in the quantum grading, restrict graded foams to those preserving
the quantum grading, and allows formal direct sums. In this construction, we view the quantum
grading as independent from the Z2-grading; hence (GFoam)|⊕q is still a (Z2, µ)-graded-2-cate-
gory, and shifts in quantum degree do not affect the Z2-degree.

Similar to webs (Lemma 2.13), the following lemma shows that relations on foams capture
the diffeotopy classes of the underlying surfaces; or rather, the underlying dotted surfaces, where
sliding a dot along a connected component is considered to be a diffeotopy. Below we write F ∼̇F ′

whenever there exists an invertible scalar r ∈ k× such that F = rF ′. Recall that sl(F ) denotes
the underlying surface of a foam F .

Lemma 2.18. Let F and F ′ be two foams in GFoamd with the same domain and codomain. If
sl(F ) and sl(F ′) are isotopic, then F ∼̇ F ′ inGFoamd.

Proof. By Cerf theory ([18]; see [66, appendix A] for a review), diffeotopic surfaces are related by
diffeotopies preserving the relative vertical positions of critical points, Morse-singular diffeotopies
interchanging two critical points, and birth-death diffeotopies. These correspond to the relations
(i), (ii) and the zigzag relations in GFoamd, respectively. Finally, if sl(F ) and sl(F ′) are dif-
feotopic by sliding a dot along a connected component, then F and F ′ are related by sliding the
dot along 1-facets, possibly crossings seams using dot migration.

When considering only isotopies of dots sliding along 1-facets, the above lemma can be made
more precise:

Lemma 2.19. Let F : W → W ′ and F ′ : W ′ → W ′′ be two foams and let D1 and D2 be two
foams identical to idW ′ except for a dot sitting on a 1-facet. If the two dots belong to the same closed
component of sl(F ′ ◦ F ), then

F ′ ◦D1 ◦ F = F ′ ◦D2 ◦ F
inGFoamd.
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dot annihilation dot migration

= = X

= Z2 = Y Z2

zigzag relations

= = 0

bubble evaluations

2

1

1

= Z +XY Z

horizontal neck-cutting relation

= + = Z−1

R

vertical neck-cutting relation squeezing relation

Figure 2.2: Relations in GFoamd. One of the two dots in the horizontal neck-cutting relation is
grey, emphasizing that it sits on the back 1-facet. The R axis is pictured from front to back, except
for the squeezing relation for which it is pictured from left to right for better readability.

19



Proof. This is a consequence of the fact that a dot can slide across 2-facets at no cost of scalar, and
along 1-facets past generators depending on µ. Because µ is symmetric (see Definition 2.1), the
latter scalar only depends on the relative vertical position of the dot.

Remark 2.20. Recall the quantumgrading fromRemark 2.17, and (GFoamd)
⊕
q
the additive q-shifted

closure ofGFoamd. One can check that the k-linear 2-category

(GFoamd)
⊕
q
|X=Y=Z=1

is precisely the category nFoam(N)• from [67, p. 1322] with n = 2 and N = d, with the
same quantum grading. This follows from Lemma 2.18 and renormalizing the i-labelled dot, the
i-labelled cap and the i-labelled zip by (−1)i. In particular, we warn the reader familiar with the
even setting that, while the dot migration relation in Fig. 2.2 has no sign, this is not an essential
feature of our construction, but rather a choice of normalization, allowed by the restriction to
directed gl2-foams (see Remark 2.10).

2.4 String diagrammatics

We introduce string diagrammatics for graded gl2-foams. This is based on the observation that
a foam is fully described by its seams; more precisely, by its domain object, its seams, and their
orientations and colours. For identity foams, this holds since webs are generated by Wi,± and
idWi,± is determined by its domain and the seam, together with its orientation and colour. Thus,
we can represent a web with an identity foam diagram (or simply identity diagram), a horizontal
juxtaposition of oriented vertical strands coloured with elements in {1, 2, . . . , d−1}. For instance:

1 3 1 2

(1, 2, 1)

1 1

3

2

1

2

1

a labelled identity diagram the web it represents

where we remind the reader that webs are read and oriented from left to right. In the example
above, we have labelled its rightmost region to specify the domain of the web. Only the bigger
numbers (1, 2, 1) (“label”) convey a notion of thickness; the smaller numbers 1, 2 and 3 (“colors”)
capture vertical position.

Labelling one region of an identity foam diagram induces a label on all of its regions thanks
to the following rule (here the value lλ (see Subsection 2.2) is given below the corresponding
coordinate):

(. . . , 1
i
, 1
i+1
, . . .)

i

(. . . , 2
i
, . . .) and (. . . , 2

i
, . . .)

i

(. . . , 1
i
, 1
i+1
, . . .) (4)

Extending a label following rule (4) may fail, as it can lead to coordinates outside of {0, 1, 2}.
However, if the extension does work, we call the labelling legal. An identity diagram equipped
with a legal label is called a labelled identity (foam) diagram. By the above discussion, labelled
identity diagrams are in one-to-one correspondence with webs.

Given these diagrammatics for webs, it is not difficult to extend it to foams. Indeed, local
behaviours in Definition 2.14 are determined by the seam, together with its orientation and colour.
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Definition 2.21. A (generic) foam diagram, or simply diagram, is a diagram obtained by vertical
and horizontal juxtapositions of identity diagrams and generators given below:

dot rightward cup leftward cap leftward cup rightward cap

i

i

i

i

i

(1, 1) (0,−1) (−1, 0) (1, 0) (0, 1)

downward
crossing

rightward
crossing

upward
crossing

leftward
crossing

i j j i i j j i

(0, 0) (0, 0) (0, 0) (0, 0)

if |i− j| > 1

Each generator is equipped with a Z2-degree, which extends additively to generic diagrams. We as-
sume that in a generic diagram, generators are in general position with respect to the vertical direction.

In a foam diagram, we refer to strands coloured i as i-strands, and dots coloured i as i-dots.
As for an identity diagram, we can label the regions of a generic diagram with elements of Λd.
The label is said to be legal if it satisfies condition (4) as before, and if for each i-dot contained
in a region labelled with λ, we have λi = 1. This latter condition corresponds to the fact that
dots can only sit on 1-facets. A labelled (foam) diagram is a foam diagram equipped with a legal
label. By the above discussion, labelled diagrams (regarded up to planar isotopies preserving the
vertical positions of generators) are in one-to-one correspondence with foams (regarded up to
Morse-preserving isotopies).

This provides a string diagrammatics for the graded-2-categoryGFoamd:

Definition 2.22. DiagΛ
d is the (Z2, µ)-graded-2-category whose objects are elements of the setΛn,d,

1-morphisms are labelled identity foam diagrams, and 2-morphisms are labelled foam diagrams, re-
garded up to the following relations:

(i) If φ : D1 → D2 is a planar isotopy such that φ preserves the relative vertical positions of the
generators, then D1 = D2 inDiagΛ

d .

(ii) If φ : D1 → D2 is a planar isotopy as above except that it interchanges the vertical positions
of two generators p and q, with p vertically above q, thenD1 = µ(deg p,deg q)D2 inDiagΛ

d .

(iii) All the local relations in Fig. 2.3 above, viewed with a legal label.

Proposition 2.23. GFoamd andDiagΛ
d are isomorphic as (Z2, µ)-graded-2-categories.

Proof. The Z2-grading is preserved by correspondence between foams and diagrams. It remains
to check that foam relations in Definition 2.16 correspond to diagrammatic relations in Defini-
tion 2.22.

Relations (i) in Definition 2.16 correspond to relations (i) in Definition 2.22, together with
graded interchange laws that involve at least one crossing, and braid-like relations, pitchfork re-
lations and dot slide.

Relations (ii) in Definition 2.16 correspond to graded interchange laws that only involve cups,
caps and dots.

Relations in Fig. 2.2 correspond to relations in Fig. 2.3, except braid-like relations, pitchfork
relations and dot slide. For instance, the horizontal neck-cutting corresponds to the evaluation of
clockwise bubbles.
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i j

=

i j i kj

=

i kj

braid-like relations

j i

=

j i

j i
=

j i

pitchfork relations

i

=
i

i
= X

i i
= Z2

i

i

= Y Z2
i

zigzag relations (or adjunction relations)

(
i

)2
= 0 i

i

=
i+ 1

i

j

i

=
j

i

if j ̸= i, i+ 1

dot annihilation dot migration dot slide

ii = 1
i
= 0

i
= Z i +XY Z i+ 1

evaluation of counter-clockwise bubbles evaluation of clockwise bubbles

i

=

i

+

i
i+ 1 i

= Z−1

i+ 1 i

neck-cutting relation squeezing relation

Figure 2.3: Relations inDiagΛ
d . We omitted the objects labelling the regions of each diagram: this

avoids clutter and emphasizes that relations are independent on the ambient object. If no orien-
tation is given, the relation holds for all orientations. In the case of the braid-like and pitchfork
relations, colours should be so that the crossings exist.
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Note that none of the relations in Definition 2.22 depends on the objects, that is, the label
of the foam diagrams. In the sequel, we mostly leave foam diagrams unlabelled, as the label is
either irrelevant to the discussion or understood from the context. In particular, this applies when
computing secondary relations from the defining relations inDiagΛ

d , as in the following lemma:

Lemma 2.24. The following local relations hold in DiagΛ
d for any choice of legal label (omitted

below):

i

= XZ2

i i

i + Y Z2

i i

i

i i+ 1

= XY Z

i i+ 1

i + 1
i = Z

i
i+ 1 = XY Z

2.5 A basis for graded gl2-foams

Each 2Hom-space ofGFoamd admits a basis with the following one-line description:

slogan. A hom-basis inGFoamd is given by picking a foam whose underlying surface
is a union of disks, and considering all the ways to put dots on the disks.

This kind of family of foams is formalized below as a reduced family, and foams appearing in
such families as reduced foams. In this section, we restrict ourselves to the description of reduced
families. The following theorem is shown in [74] (see also [73]) using higher linear rewriting
theory:

Theorem 2.25 (Basis theorem for graded gl2-foams). Let W,W ′ : µ → λ be two webs with the
same source and target. W and W ′ admit a reduced family (Definition 2.26) and every reduced
family constitutes a basis of HomGFoamd

(W,W ′).

Let W,W ′ : µ → λ be two webs with the same source and target. We denote sl(W ) ⊔∂
sl(W ′) the closed 1-manifold obtained by glueing sl(W ) and sl(W ′) along their common bound-
ary points. Note that if F : W → W ′ is a foam, then ∂(sl(F )) is homeomorphic to sl(W ) ⊔∂
sl(W ′). A reduced foam is a foam F such that sl(F ) is a (dotted) union of disks with at most one
dot on each disk. In that case, there is a bijection between π0(sl(F )), the connected components
of sl(F ), and π0(sl(W ) ⊔∂ sl(W ′)), the connected components of sl(W ) ⊔∂ sl(W ′), mapping a
disk to its boundary. For δ ⊂ π0(sl(W ) ⊔∂ sl(W ′)), we say that sl(F ) (or abusing terminology,
F ) is δ-dotted if the following holds:

δ-dotted: there is a dot (resp. no dot) sitting on a disk d in sl(F ) if and only if its
boundary ∂d ∈ π0(sl(W ) ⊔∂ sl(W ′)) is in δ (resp. is not in δ).

We say that F is undotted whenever it is ∅-dotted.

Definition 2.26. LetW,W ′ : µ→ λ be two webs with the same source and target. A reduced family
is a family of foams Fδ : W → W ′, indexed by subsets δ ⊂ π0(sl(W ) ⊔∂ sl(W ′)), such that each
Fδ is a δ-dotted reduced foam.

Thanks to Lemma 2.18, reduced families are essentially unique, in the sense that if {Fδ}δ and
{F ′

δ}δ are two reduced families for the same hom-space, then Fδ ∼̇ F ′
δ for all δ. In particular:

23



Lemma 2.27. LetW,W ′ : µ→ λ be two webs with the same source and target. If a reduced family
is a basis of the homGFoamd

(W,W ′), then every reduced family is a basis of homGFoamd
(W,W ′).

As shown in [6, Lemma 2.5], counting the number of closed components in sl(W ) ⊔∂ sl(W ′)
defines a non-degenerate pairing on gl2-webs:

⟨W,W ′⟩ := (q + q−1)|π0(sl(W )⊔∂sl(W
′))|,

where |π0(sl(W ) ⊔∂ sl(W ′))| denotes the number of connected components in sl(W )⊔∂ sl(W ′).
This pairing coincides with the web evaluation formula given in [69]; see also [6, p. 1315].

Corollary 2.28 (Non-degeneracy of graded gl2-foams). LetW,W ′ : µ → λ be two webs with the
same source and target. Denote by#1(λ, µ) the number of 1’s in λ plus the number of 1’s in µ. Then
the space HomGFoamd

(W,W ′) is a free k-module and:

gdimq HomGFoamd
(W,W ′) = q#1(λ,µ)/2⟨W,W ′⟩,

where gdimq(−) denotes the graded rank with respect to the q-grading.

Proof. Let F : W → W ′ be a δ-dotted reduced foam. Following Remark 2.17, we have that
qdegF = 2 |δ|−|π0(sl(W ) ⊔∂ sl(W ′))|+#1(λ, µ)/2. The result follows from Theorem 2.25.

2.6 The categorification theorem

Recall the definition of the Grothendieck ring of a graded-2-category and related notions from Sub-
section 2.1.2. We decategorify GFoamd with respect to the quantum grading (see Remark 2.17),
that is:

K0(GFoamd)|q = K0((GFoamd)
⊕
q
).

As explained in Subsection 2.1.2, we call it the quantum Grothendieck ring ofGFoamd. It has the
structure of a Z[q, q−1]-linear category.

Theorem 2.29 (Categorification theorem). The graded-2-category of graded gl2-foams graded-
categorifies the category of gl2-webs:

K0(GFoamd)|q ∼= Webd,

where the isomorphism is an isomorphism of Z[q, q−1]-linear categories.

This generalizes the analogous statement in the non-graded case, see e.g. [6, Theorem 2.11].
The proof follows the same line of thought, borrowing the general strategy from [50].

Proof of Theorem 2.29. Let γ : Webd → K0(GFoamd)|q mapping a web W to its image [W ] in
K0(GFoamd)|q . The neck-cutting relation, the squeezing relation and the first braid-like relation
in Fig. 2.3 show that the web relations lift to isomorphisms in (GFoamd)

⊕
q
, so that γ is well-

defined. By Corollary 2.28, γ preserves a non-degenerate pairing, so it must be injective.
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3 Covering Khovanov homology

In this section, we define an invariant of oriented tangles and show that it coincides with odd Kho-
vanov homology when restricted to links. More generally, we define an invariant that coincides
with covering Khovanov homology, an invariant of links defined by Putyra [66]. Both constructions
are defined over the ring k given with elements X , Y and Z such that X2 = Y 2 = 1 (see Def-
inition 2.15)1. The even case (choosing X = Y = Z = 1) recovers (even) Khovanov homology,
while the odd case (choosing X = Z = 1 and Y = −1) recovers odd Khovanov homology2.

To distinguish the two constructions, we call Putyra’s construction covering sl2-Khovanov ho-
mology and denote it CKhsl2(L) for an oriented link L, and we call our construction covering
gl2-Khovanov homology and denote it CKhgl2(T ) for an oriented tangle T . The latter coincides
with not even Khovanov homology [79] in the odd case (choosing X = Z = 1 and Y = −1). See
also Remark 1.3 for connections with the work of Naisse and Putyra [61].

To state our claim precisely, we introduce the following completions of Λd (see (3)), Webd

(Definition 2.11) andGFoamd (Definition 2.16):

Definition 3.1. The set Λ, the Z[q, q−1]-linear category Web and the (Z2, µ)-graded-2-category
GFoam are respectively defined as:

Λ := colim(. . . ↪→ Λd ↪→ Λd+2 ↪→ . . .),

Web := colim(. . . ↪→Webd ↪→Webd+2 ↪→ . . .),

GFoam := colim(. . . ↪→ GFoamd ↪→ GFoamd+2 ↪→ . . .),

where the embeddings denote the addition of a double point on the right, a double line on top, and a
double facet at the back.

The fact that the above indeed are embeddings follows from Lemma 2.13 and Theorem 2.25.
As an example, in the categoryWeb the following identity webs are identified:

= in Web.

Informally, working in Λ, Web and GFoam means that one can always “add a double point on
the right, a double line on top, and a double facet at the back”.

For C a (G,µ)-graded-2-category, we denote by Ch•(C) the k-linear category of chain com-
plexes in C and chain morphisms. We say that a chain morphism is degree-preserving if each of
its components is degree-preserving. Note that in general, chain morphisms need not be degree-
preserving.

Recall from Subsection 2.1.2 that (GFoam)|⊕q denotes the additive q-shifted closure ofGFoam:
it allows formal shifts of webs in the quantum grading, restrict graded foams to those preserving
the quantum grading, and allows formal direct sums. As before, we view the quantum grading as
independent from the Z2-grading; hence (GFoam)|⊕q is still a (Z2, µ)-graded-2-category (for µ
as in Definition 2.15), and shifts in quantum degree do not affect the Z2-degree.

For each sliced oriented tangle diagram DT representing an oriented tangle T , we define in
Subsection 3.1.2 a chain complex

Komgl2(DT ) ∈ Ch•((GFoamd)|⊕q ).
1More precisely, Putyra’s original description is in the graded case.
2Equivalently, one can work in the graded case (X , Y and Z are formal parameters) and change the base ring at the

level of chain complexes.
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Then:

Theorem 3.2. Let DT be a sliced oriented tangle diagram presenting an oriented tangle T , and
denote N+ and N− the number of positive and negative crossings, respectively. The homotopy type
of q−2N++N−tN+Komgl2(DT ), denoted CKhgl2(T ), is an invariant of the oriented tangle T .

The proof of Theorem 3.2 is given in Subsection 3.1.3. This construction is a graded analogue
of the construction given in [52]. Crucially, it uses a graded horizontal composition (or “object-
adapted” tensor product) of chain complexes (Section 5), for which we give a minimal introduction
in Subsection 3.1.1.

In Subsection 3.2, we review the definition of covering sl2-Khovanov homology. For each
oriented link diagramDL, it associates a complex Komsl2(DL) in Ch•(k-ModZ), the category of
chain complexes in Z-graded k-modules. The homotopy type of q−2N++N−tN+Komsl2(DL) is an
invariant of the oriented link L.

Finally, Subsection 3.3 shows the equivalence between the two constructions, when restricted
to links. To state it, denote by ∅ ∈ Λ the empty weight and by ∅ := id∅ its identity, the empty
web. Recall that in Λ (resp. in Web), the empty weight (resp. the empty web) is the same as an
arbitrary vertical juxtaposition of double points (resp. double lines). Denote byGFoam(∅, ∅) the
Z-graded k-linear category obtained by restricting GFoam to the object ∅ (the Z-grading being
the quantum grading), and let

Agl2 : GFoam(∅, ∅)→ k-ModZ

be the representable functor Agl2
:= HomGFoam(∅,∅)(∅,−). It canonically extends to a functor

Agl2 : Ch•((GFoam)|⊕q )(∅, ∅)→ Ch•(k-ModZ).

Finally, we need the following Technical Condition:

Definition 3.3. We say that the ring k from Definition 2.15 verifies the Technical Condition if for
every monomial1 a in X,Y, Z such that (1− a)(1 +XY ) = 0, then either a = 1 or a = XY .

The Technical Condition is verified in all of the three canonical choices, either even, odd or
graded.

We can now state the main result of this section:

Theorem 3.4. Assume that k verifies the Technical Condition (Definition 3.3). Let DL be a sliced
link diagram presenting an oriented link L. We have the following degree-preserving isomorphism of
chain complexes of k-modules:

Agl2(Komgl2(DL)) ∼= Komsl2(DL).

The Technical Condition is only used in Proposition 3.22. This theorem is the content of Main
theorem C in the odd case (choosing X = Z = 1 and Y = −1).

1More precisely, a is an element of the abelian group generated by X , Y and Z , viewed as elements of the abelian
group (k×, ·).
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3.1 A covering gl2-Khovanov homology for oriented tangles

3.1.1 Composition of hypercubic chain complexes

We describe the horizontal composition of two hypercubic complexes in a given graded-2-cate-
gory. Hypercubic complexes are special cases of homogeneous polycomplexes, introduced in full
generality in Definition 5.3. The horizontal composition that we describe is the specialization of
the definitions Definition 5.6 and Definition 5.91. This is the minimal description necessary for the
construction of covering gl2-Khovanov homology.
Notation 3.5. Fix N ∈ N. We view {0, 1}N as a hypercubic lattice and denote (ei)i∈{1,...,N} the
canonical basis of ZN . For each r ∈ {0, 1}N and each i ∈ {1, . . . , N}, we write r → r + ei the
corresponding edge in the hypercube {0, 1}N .

Fix C a (G,µ)-graded-2-category. Whenever we write a composition in C, it is tacitly assumed
that the 1-morphisms or 2-morphisms involved are composable.

Definition 3.6. A hypercubic complex in C and of dimension N is a pair A = (A,α) consisting of
the following data:

(i) for each vertex r ∈ {0, 1}N , a 1-morphism Ar in C,

(ii) for each edge r → r+ ei, a homogeneous 2-morphism αr
i : A

r → Ar+ei in C, such that each
square anti-commutes:

α
r+ei1
i2

⋆1 α
r
i1 = −αr+ei2

i1
⋆1 α

r
i2

for all suitable r ∈ {0, 1}N and i1, i2 ∈ {1, . . . , N}.

(iii) The grading is constant in a given direction, in the sense that for any i ∈ {1, . . . , N}, either
αr
i = αs

i = 0 for all r, s ∈ {0, 1}N , or else degαr
i = degαs

i for all r, s ∈ {0, 1}N .

Given such a hypercubic complex A = (A,α), we define the following element of G:

|α| (r) :=
∑

i : ri=1

degG(α
0
i ),

where 0 := (0, . . . , 0) ∈ {0, 1}N and we abused notation setting degG(0) = 0. Alternatively, the
element |α| (r) is the sum of the G-degrees along a path from 0 to r.

Definition 3.7. Let A = (A,α) and B = (B, β) be two hypercubic complexes of dimensionsN and
M respectively. The horizontal composition A ⋆0 B of A and B is the hypercubic chain complex of
dimension N +M defined by the following data:

(i) on each vertex (r, s) ∈ {0, 1}n+m, the 1-morphism Ar ⋆0 B
s;

(ii) on each edge (r, s)→ (r, s) + ek, the homogeneous 2-morphism

(α ⋆0 β)
(r,s)
k :=

{
αr
i ⋆0 idBs if k = i ∈ {1, . . . , N},

(−1)|r|µ
(
|α| (r), βsj

)
idAr ⋆0 β

s
j if k = j ∈ {N + 1, . . . , N +M},

1More precisely, their straightforward generalizations where graded-monoidal categories are replaced by graded-2-
categories.
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The sign appearing above is the graded Koszul rule. By Theorem 5.13, this horizontal compo-
sition is coherent with homotopies (see also Main theorem B).

Note that a length-two chain complex whose differential is homogeneous is exactly a hypercu-
bic complex of dimension one. In particular, if A1, . . . ,AN is a family of horizontally composable
length-two chain complexes with homogeneous differentials, Definition 3.7 defines their N -fold
horizontal composition.

3.1.2 Definition of covering gl2-Khovanov homology

We now define a chain complexKomgl2(D) ∈ Ch•((GFoam)|⊕q ) for every sliced tangle diagram
D. In fact,Komgl2(D) is independent of the orientation ofD, and we shall not mention it again in
this section. The reader can follow the procedure on the example given in Fig. 3.1, withD pictured
at step 1 .

We shall need the following definitions of “mixed crossings”, between a single line and a double
line:

:= and := . (5)

These mixed crossings satisfy the following relations inWeb:

= and = . (6)

as well as all the relations obtained from the above by reflecting vertically and horizontally.

The procedure starts by telling how to assign a web to an elementary flat tangle diagram, that
is, to a cap and a cup (see [52, section 4A2]). There are more than one webW such that sl(W ) is
a cup (or a cap), but we fix a choice by fixing the endpoints. To enforce the given endpoints, we
use the mixed crossings (5).

Say that λ ∈ Λ is antidominant if it is antidominant as a gl2-weight, that is, if it is (non-strictly)
increasing. To any set of n points on a line corresponds a unique antidominant weight λ ∈ Λd

for n ≤ d and n = d mod 2. In turn, those antidominant weights define a unique element in
Λ. Given any elementary flat tangle diagram, we pick a web representative whose endpoints are
antidominant by “adding a double line to the cup or cap and sliding it to the top”. For instance:

7→

Note that fixing a choice for the endpoints ensures that if two elementary flat tangle diagrams
are composable, then so are the corresponding webs in Web. We may extend this assignment to
non-flat tangle diagrams by formally adjoining crossings to our web diagrammatics (see step 2
in Fig. 3.1).

The procedure extends to chain complexes in Ch•((GFoam)|⊕q ). For cups and caps, it is the
chain complex concentrated in homological degree 0 corresponding to the previously assigned
web. For crossings, this is given by the Khovanov–Blanchet bracket, generalized to the graded
case:

7→ qt−1 −−−−→

28



1 2

3

q2t−2

qt−1

qt−1

1 3 2

−Y

Figure 3.1: Defining procedure for Komgl2 , in the case of a sliced tangle diagram presenting the
Hopf link. The variables q and t respectively denote shift in quantum and homological degrees.
Both differentials have Z2-degree (0, 1): one checks that the graded Koszul rule in Definition 3.7
adds the scalar −Y , as pictured in the figure.
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7→ qt−1 −−−−→

The variables q and t respectively denote shift in quantum and homological degrees. Note that
the differentials are degree-preserving with respect to the quantum degree. However, they are not
degree-preserving with respect to the Z2-degree: the former has Z2-degree (1, 0), while the later
has Z2-degree (0, 1). If one restricts to the odd case (X = Z = 1 and Y = −1), the former has
even parity and the latter has odd parity.

Finally, let D be a sliced tangle diagram. Then Komgl2(D) is defined as the horizontal com-
position (see Definition 3.7) of the chain complexes assigned to each slice of D. This ends the
definition of Komgl2(D) (see step 3 in Fig. 3.1). ⋄

3.1.3 Proof of invariance

In this subsection, we prove Theorem 3.2.
Since the horizontal composition of chain complexes is coherent with homotopies (Theo-

rem 5.13), the proof can be done locally. It suffices to check invariance under the Reidemeister–
Turaev moves for sliced oriented tangle diagrams (see e.g. [63]). We split the proof in two lemmas,
the first one (Lemma 3.8) dealing with planar isotopies and the second one (Lemma 3.10) dealing
with Reidemeister moves.

Lemma 3.8. Let D1 and D2 be two sliced tangle diagrams. If D1 and D2 are planar isotopic, then
Komgl2(D1) and Komgl2(D2) are isomorphic.

Proof. It suffices to check invariance under elementary planar isotopies for sliced tangle diagrams,
as given by Fig. 3.2.

T

...

T ′

←→
T

...

T ′

←→ ←→

←→ ←→

Figure 3.2: Elementary planar moves for sliced tangle diagrams. Here T (resp. T ′) denotes a cross-
ing, an cup or an cap.

If the elementary planar isotopy does not involve any crossing, the complex is concentrated
in a single homological degree. Finding an isomorphism of complexes reduces to finding an iso-
morphism of webs. Thanks to the categorification theorem (Theorem 2.29) and Lemma 2.13, two
websW1 andW2 are isomorphic in (GFoam)|⊕q precisely if sl(W1) and sl(W2) are isotopic.

If the elementary planar isotopy contains exactly one crossing, the assigned complexes are
length-two complexes with isotopic webs as vertices. Fix a pair of isomorphisms between these
webs. Thanks to Lemma 2.18 (if two foams have the same underlying surface, they are equal up
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to invertible scalar), this pair defines a chain morphism up to invertible scalar. Renormalizing
provides a genuine chain isomorphism.

Finally, the only elementary planar isotopy with at least two crossings is the planar isotopy
interchanging two crossings. The associated chain complexes have the form F ⋆1 F

′ and F ′ ⋆1 F
respectively, for some pair of length-two complexes F and F ′. A chain isomorphism F ⋆1 F

′ ∼=
F ′ ⋆1 F is given by suitable pointwise compositions of foam crossings, exchanging F with F ′.
This commutes thanks to braid-like relations.

To show invariance under Reidemeister moves, we follow Bar-Natan’s strategy for the even
case [3, 4], using delooping and gaussian elimination. Delooping denotes using circle evaluation
in Web to remove a circle, while gaussian elimination is the following general homological fact
[3, Lemma 3.2]:

Lemma 3.9. In any additive category, if α is an isomorphism in the complex C• given by

X

W Z

Y

γ

⊕
α

β δ

,

then there exists a homotopy equivalence of complexesC• → C ′
• whereC

′
• is the complex Y Zδ .

Moreover, this homotopy equivalence is a strong deformation retract. Similarly, if γ is an isomorphism

there exists a strong deformation retract from C• intoW Y
β

.

One needs not know the definition of a strong deformation retract, except for its appearance
in Lemma 3.11 below.

←→ ←→

←→ ←→

←→

Figure 3.3: Reidemeister moves for sliced oriented tangle diagrams.

Lemma 3.10. Let D1 and D2 be two oriented sliced tangle diagrams. Denote N i
+ (resp. N i

−) the
number of positive (resp. negative) crossings inDi. IfD1 andD2 are related by a Reidemeister move
(see Fig. 3.3), then

q−2N1
++N1

−tN
1
+Komgl2(D1) and q−2N2

++N2
−tN

2
+Komgl2(D2)

are homotopic.

Proof. Consider first the Reidemeister I move. The proof of invariance is essentially contained
in Fig. 3.4. On the left, the complex associated to the left-hand-side of the move. On the right,
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the same complex after delooping in homological degree zero, and simplifying in homological
degree one. By Lemma 2.24, the bottom arrow is an isomorphism, so gaussian elimination gives
a homotopy equivalence with the left-top web. It is shifted in quantum and homological degrees,
but this is fixed by the renormalization. Invariance under the other Reidemeister I move is proved
similarly.

qt−1

12

−−−−−→

≃

q2t−1

t−1

Figure 3.4: proof of invariance under Reidemeister I

Reidemeister II is proved similarly. The complex associated to the non-trivial side of this move
is pictured in Fig. 3.5. Delooping can be applied to the bottom web, and gaussian elimination
(together with zigzag relations) shows that this complex is homotopy equivalent to the top web.
Renormalization concludes.

q2t−2

qt−1

qt−1

−Z−1

Figure 3.5: proof of invariance under Reidemeister II

Following Bar-Natan [4], we use cones to simplify the proof of invariance under Reidemeister
III. Denote Γ(ψ) the cone associated to a morphism of complex ψ. Any hypercube T of dimension
n can be seen as cone. Indeed, choose a direction k in the hypercube. Ignoring the k-edges, T
breaks in two hypercubes T1 and T2 of dimension n− 1. Then, switch the signs of all differentials
in T1. the hypercube T1 is still a complex, but the k-faces of T now commute instead of anti-
commuting: the k-edges form a morphism ψ : T1 → T2. It is then easy to see that Γ(ψ) = T . We
shall use the following lemma:

Lemma 3.11 ([4, Lemma 4.5]). The cone construction is invariant, up to homotopy, under composi-
tions with strong deformation retracts. That is, if ψ and F are composable morphisms of complexes
and F is a deformation retract, then Γ(Fψ) ≃ Γ(ψ).
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3

21

−X

−X

−X

−X

X · Id

ψ1

F1

2

13

−X

−X

−X

−X

Id

ψ2

F2

Figure 3.6: proof of invariance under Reidemeister III

The proof of invariance is then essentially contained in Fig. 3.6, where we discarded quantum
and homological shifts for clarity. On the top, one sees the hypercubes associated to each side of
the Reidemeister III move, viewed as cones over morphisms respectively denoted ψ1 and ψ2. The
ordering 1, 2 and 3 of the three directions corresponds to the ordering of the crossings, reading from
right to left. Note that the top faces are identical. The bottom of the picture shows how the bottom
faces are simplified using delooping and gaussian elimination, giving homotopy equivalences F1

and F2.
Thanks to Lemma 3.9, F1 and F2 are strong deformation retracts, so by the above lemma,

Γ(Fiψi) ≃ Γ(ψi) for i = 1, 2. To conclude, it only remains to compare F1ψ1 and F2ψ2. Delving
into the proof of Lemma 3.9 (or computing by hand), we get explicit F1 and F2; the result is shown
in Fig. 3.6. We get that F1ψ1 = F2ψ2, and hence Γ(F1ψ1) ≃ Γ(F2ψ2).

Proof of Theorem 3.2. The renormalizationwith q−2N++N− does not affect the result of Lemma 3.8:
ifD1 andD2 are two planar isotopic oriented sliced tangle diagrams, then q−2N1

++N1
−Komgl2(D1)

and q−2N2
++N2

−Komgl2(D2) are isomorphic, and in particular homotopic (here we used the nota-
tions of Lemma 3.10). We conclude with invariance under Reidemeister moves (Lemma 3.10).

3.2 Review of covering sl2-Khovanov homology for links

We review the construction of covering sl2-Khovanov homology as defined by Putyra [66]. His
construction uses a 2-category of “chronological cobordisms”, but for our purpose, we give here a
“low-tech” definition of covering sl2-Khovanov homology, directly generalizing the original defi-
nition of odd Khovanov homology of Ozsváth, Rasmussen and Szabó [65].

We first give some preliminary definitions. Recall the ring k from Definition 2.15 with distin-
guished elementsX,Y, Z such thatX2 = Y 2 = 1. For n ∈ N, let ∧k(a1, . . . , an) be the k-algebra
generated by variables a1, . . . , an and subject to the following relations:

aiaj = XY ajai for 1 ≤ i, j ≤ n,
a2i = 0 for 1 ≤ i ≤ n.
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Denote by ∧rk(a1, . . . , an) the k-submodule of ∧k(a1, . . . , an) generated by words of length r in
the letters a1, . . . , an. We endow∧k(a1, . . . , an)with a Z-grading, the q-grading, setting qdeg p =
2r − n whenever p ∈ ∧rk(a1, . . . , an). Define also the following linear maps:

ma1,a2;a : ∧k (a1, a2, x1, . . . , xn)→∧k (a, x1, . . . , xn)
p 7→p|a1,a2 7→a

∆a;a1,a2 : ∧k (a, x1, . . . , xn)→∧k (a1, a2, x1, . . . , xn)
p 7→(a1 +XY a2)p|a7→a1

= (a1 +XY a2)p|a7→a2

Here a1, a2 7→ ameans that one should replace every instance of a1 and a2 by a in p, and similarly
for a 7→ a1 and a 7→ a2. Note that in the later case, replacing a by either a1 or a2 gives the same
result since (a1 +XY a2)a1 = (a1 +XY a2)a2.

With respect to the q-grading, these maps are graded maps with q-degree

qdeg(ma1,a2;a) = qdeg(∆a;a1,a2) = 1.

Note that one recovers the Frobenius algebra Z[a1, . . . , an]/(a21 = . . . = a2n = 0) with its product
and coproduct in the even case (choosing X = Y = Z = 1), and the exterior algebra in variables
a1, . . . , an in the odd case (X = Z = 1 and Y = −1).

Recall Notation 3.5. For r ∈ {0, 1}N and k, l ∈ {1, . . . , N} where k < l, the square

r r + ek

r + el r + ek + el

⟳ (7)

is given an orientation as depicted, and we denote it by □r
k,l.

Let then D be a link diagram with N crossings. The hypercubic complex Komsl2(D) is con-
structed through the following steps:

(i) Hypercube of resolutions: fix an arbitrary order on the crossings of D. Each crossing can be
resolved into two possible planar diagrams, respectively the 0-resolution (on the left) or the
1-resolution (on the right):

7→ −−−−−−−−→

A resolution of D is a choice of resolutions for each crossing. The resolutions of D can
be pictured as sitting on the vertices of a hypercube {0, 1}N , where for r ∈ {0, 1}N the
binary ri encodes the chosen resolution for the i-th crossing. Each edge r → r + ei of the
hypercube connects two resolutions that only differ at the i-crossing. This edge is decorated
with a saddle cobordism, which can either be a merge or a split depending on the global
context. Finally, for each crossing one must choose an orientation on the arcs of the two
resolutions: the red or the blue orientation. We call it the arc orientation. Equivalently,
an arc orientation is a choice of arc orientation for the 0-resolution, which induces an arc
orientation for the 1-resolution by rotating a quarter of a turn clockwise.
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(ii) Algebraization: we turn the hypercube of resolutions into a hypercube in the category of
Z-graded k-modules. To each vertex r ∈ {0, 1}N we associate the k-module

Vr := qN−|r|t−(N−|r|) ∧k (a1, . . . , an),

where q and t denote shifts in quantum and homological degree respectively, and n is the
number of connected components in the corresponding resolution. One should think of each
variable as attached to one connected component. In addition, each edge is replaced by an
k-linear map between relevant k-modules:

a

a2a1

7→ ma1,a2;a and

a

a1 a2

7→ ∆a;a1,a2

Note the importance of the extra arrows, which give a preferred choice of ordering between
the two circles corresponding to the variables a1 and a2. We denote Hsl2(D) the resulting
hypercube.

(iii) Commutativity: As defined, squares in the algebraized hypercube do not necessarily com-
mute. In fact, if we consider a generic square

r r + ek

r + el r + ek + el

⟳

F∗0

F0∗ F1∗

F∗1

,

we have:
F1∗ ◦ F∗0 = ψsl2(□r

k,l)F∗1 ◦ F0∗.

Here ψsl2 is the k×-valued 2-cochain on the hypercube defined by Table 1. As shown in
[65, 66], ψsl2 is a cocycle. An sl2-scalar assignment is a choice of a 1-cochain ϵsl2 such that
∂ϵsl2 = ψsl2 . Such a choice always exists: by contractibility of the hypercube, a 2-cocycle is
always a 2-coboundary. Given a choice of sl2-scalar assignment ϵsl2 , we multiply each edge
e of the hypercube by ϵsl2(e): this makes each square commute. We denoteHsl2(D, ϵsl2) the
resulting hypercube.

(iv) Koszul rule: we apply the Koszul rule (multiplying each edge r → r+ei by (−1)#{rj=1|j<i})
to turn every commutative square into an anti-commutative square. We denote Komsl2(D)
the resulting hypercubic complex.

Theorem 3.12 ([65, 66]). Let D be an oriented link diagram with respectively N+ and N− posi-
tive and negative crossings, presenting an oriented link L. The isomorphism class of Komsl2(D) is
independent of the choice of ordering on crossings, the choice of arc orientations, and the choice of sl2-
scalar assignment. Moreover, the homotopy type of q−2N++N−tN+Komsl2(D), denoted CKhsl2(L),
is an invariant of L.

Remark 3.13. The 2-cocycle ψsl2 is not the only choice that makes the construction above work.
Indeed, for the last two cases of Table 1, called the ladybugs,1 we both have

F1∗ ◦ F∗0 = ψsl2(□r
k,l)F∗1 ◦ F0∗ and F1∗ ◦ F∗0 = XY ψsl2(□r

k,l)F∗1 ◦ F0∗.

1This terminology is borrowed from [55].
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1 XY

1 XY

Table 1: Definition of ψsl2 for covering sl2-Khovanov homology. Each square is uniquely repre-
sented by the (relevant local piece of) resolution at the initial point. If no orientation on the arrows
is given, then the value of ψsl2 is independent of the choice of orientations. The last two cases are
called the ladybugs.

Define ψsl2 to be the 2-cochain defined as ψsl2 except for the ladybugs, where instead we set

ψsl2

( )
= XY and ψsl2

( )
= 1.

The results of Theorem 3.12 still hold in this case. Let us use the notations CKhsl2(L,ψsl2) and
CKhsl2(L,ψsl2) to distinguish the two constructions. In [65], they are respectively called “type
X” and “type Y” (choosing X = Z = 1 and Y = −1; no analogy between the scalar X and
“type X” intended). It is shown in Putyra [66] that CKhsl2(L,ψsl2) and CKhsl2(L,ψsl2) are in fact
isomorphic.

3.3 Covering sl2- and gl2-Khovanov homologies are isomorphic

This section is devoted to the proof of Theorem 3.4. Here is a quick summary:

(i) In Subsection 3.3.2, we restate the definition of covering gl2-Khovanov homology using a
gl2-hypercube of resolutions. The rest of the proof consists in comparing this gl2-hypercube
with the sl2-hypercube defined above.

(ii) To compare the hypercubes, we need to compare the k-modules at each vertex. This re-
quires a choice of basis for each HomGFoam(∅,W ), called cup foams, that we describe in
Subsection 3.3.1.

(iii) In Subsection 3.3.3, we use the above basis to define a family of isomorphisms on the level
of vertices. This defines a proper morphism of hypercubes only up to invertible scalar ; we
call it a projective morphism. We state a certain 2-cocycle condition such that, if satisfied,
the aforementioned family of isomorphisms can be rescaled into a genuine isomorphism of
hypercubes.
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(iv) The proof of Theorem 3.4 then reduces to the analysis of this 2-cocycle condition. Subsec-
tion 3.3.4 shows that this can be done locally, looking only at the cases pictured in Table 1. In
most cases, general considerations show that the 2-cocycle condition is necessarily verified.

(v) However, these general considerations do not work for the ladybugs (see Remark 3.13). To
deal with these two cases, we require finer results on the independence on all choices in-
volved in the above family of isomorphisms. This is done in Subsection 3.3.5, which con-
cludes the proof.

3.3.1 Cup foams

Call a webW closed if sl(W ) is a closed 1-manifold. Recall the basis described in Subsection 2.5. In
the special casewhere the domain is the emptyweb and the codomain is a closedwebW (recall that
in (GFoam)|⊕q , the empty web is equal to a juxtaposition of double lines), an undotted reduced
foam as the following form:

sl(F ) = cups

∅

sl(W )

We call such an F an undotted cup foam onW . If we wish to allow F to (possibly) carry dots, we
simply say that F is a cup foam on W . We write π0(sl(W )) for the set of closed components of
sl(W ). In this context, Theorem 2.25 is restated as follows:

Proposition 3.14. LetW be a closed web. Let B be a set containing precisely one cup foam

βδ : ∅ →W

for each subset δ ⊂ π0(sl(W )), so that for each c ∈ π0(sl(W )), the corresponding disk in sl(βδ) is
dotted if and only if c ∈ δ. Then B is basis for the k-module HomGFoam(∅,W ).

Fix an undotted cup foam βW for W and pick a total order on π0(sl(W )). For each subset
δ ⊂ sl(W ), denote by idδW : W → W the foam identical to idW except for an additional dot on
the connected component c for each c ∈ δ, ordering the dots increasingly with respect to the total
order on π0(sl(W )), reading from bottom to top on idδW . This defines idδW uniquely. We denote
βWδ := idδW ◦ βW . Schematically:

sl(βWδ ) =
dots on δ

cups

∅

sl(W )

It follows from Proposition 3.14 that:

Corollary 3.15. For every choices of undotted cup foam βW and total order on π0(sl(W )), the family
{βWδ }δ⊂sl(W ) defines a basis for the k-module HomGFoam(∅,W ).

Let V and W be two closed webs. If F : V → W is a zip or an unzip, then sl(F ) is either a
merge or a split. Belowwe sometimes speak of the closed components in the domain and codomain
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of sl(F ) to refer only to the closed components making up the boundary of the closed component
in sl(F ) containing the saddle. The distinction should be clear by the context.

Recall the symbol ∼̇ to mean “equal up to multiplying by an invertible scalar”, defined in the
paragraph before Lemma 2.18.

Proposition 3.16. Let V andW be closed webs and βV (resp. βW ) be a choice of undotted cup foam
for V (resp.W ). Let F : V →W be a zip or an unzip. Then:

(i) If sl(F ) is a merge, then (as depicted in (8))

F ◦ βV ∼̇ βW .

(ii) If sl(F ) is split, then (as depicted in (9))

F ◦ βV ∼̇ βWi1 +XY βWi2 ,

where i1 and i2 are the connected components of W corresponding to the codomain of sl(F )
(note that the ordering of i1 and i2 is irrelevant in that statement).

Here is the schematic for Proposition 3.16:

cups

∅

merge
W

V ∼̇ cups

∅

W

(8)

cups

∅

split
W

V ∼̇
cups

∅

dot on i1
W

V +XY
cups

∅

dot on i2
W

V (9)

Proof of Proposition 3.16. Fix a total order on π0(sl(V )) and π0(sl(W )). Using the neck-cutting
successively on the identity ofW , one can decompose it as

idW =
∑

δ⊂π0(sl(W ))

βWδ ◦ βcδc ,

where δc := π0(sl(W )) \ δ, and each βcδ : W → ∅ is a cap foam in the sense that sl(βcδ) is a union
of disks, each disk being dotted depending on δ as in Proposition 3.14. This allows us to write:

F ◦ βV =
∑

δ⊂π0(sl(W ))

βWδ ◦
(
βcδc ◦ F ◦ βV

)
,

where each βcδc ◦F ◦βV is a closed foam, that is a foam with domain and codomain the empty web.
Then, we apply the following result on the evaluation of closed foams, which is a consequence of
Theorem 2.25:

Lemma 3.17. Let U : ∅ → ∅ be a closed foam inGFoam. Then:

U ∼̇

{
id∅ if each closed component of sl(U) is a sphere with a single dot,
0 otherwise.
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By the above lemma, there exist invertible scalars τ , τ1 and τ2 such that:

F ◦ βV = τβW or F ◦ βV = τ1β
W
i1 + τ2β

W
i2 ,

depending on whether sl(F ) is a merge or a split. It remains to show that τ1/τ2 = XY in the
latter case. For that, we use Lemma 2.19. Assume i1 < i2 for the purpose of the computation, so
that idi1,i2 = idi2 ◦ idi1 :

τ1β
W
i1,i2 = idWi2 ◦ (τ1β

W
i1 + τ2β

W
i2 ) = idWi2 ◦ F ◦ β

V

2.19
= idWi1 ◦ F ◦ β

V = idWi1 ◦ (τ1β
W
i1 + τ2β

W
i2 ) = XY τ2β

W
i1,i2 ,

where in the last equality we used that two dots interchange at the cost of the scalar XY . Since
βWi1,i2 ̸= 0 belongs to a free family by Proposition 3.14, we must have (τ1 − XY τ2) = 0, which
concludes.

3.3.2 The gl2-hypercube of resolutions

We reformulate the definition of covering gl2-Khovanov homology to emphasize the similarities
with covering sl2-Khovanov homology. Recall

Agl2
:= HomGFoam(∅,∅)(∅,−)

defined in the introduction of this section.
LetD be a sliced oriented link diagram withN crossings. As described in Subsection 3.1.2, we

can associate withD a knotted webWD . Then, starting withWD , the complexAgl2(Komgl2(D))
can be defined as follows:

(i) Hypercube of resolutions: each crossing can be resolved into a web 0-resolution or a web
1-resolution:

7→ qt−1 −−−−−−→ and 7→ qt−1 −−−−−−→

A web resolution is a choice of web resolutions for each crossing. Fixing an ordering on the
crossings, they can be pictured as sitting on the vertices of the hypercube {0, 1}N , whose
edges are decorated with a zip or an unzip, depending on whether the associated crossing
is positive or negative.

(ii) Algebraization: we apply the functor Agl2 to the hypercube. DenoteHgl2(D) the decorated
hypercube so obtained.

(iii) Commutativity: a gl2-scalar assignment1 is an k×-valued 1-cochain ϵgl2 on the hypercube
{0, 1}N , such that ∂ϵgl2 = ψgl2 where ψgl2 is a 2-cocycle defined as

ψgl2(□
r
k,l) := µ(degF0∗, degF∗0)

−1 = µ(degF∗1,degF1∗).

We multiply each edge e by ϵgl2(e). This makes each square commutes. This defines a
hypercube Hgl2(D; ϵgl2).

1The notion of scalar assignment here is slightly different from Section 5, as the latter already includes the Kozsul
rule.
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(iv) Koszul rule: we apply the Koszul rule to turn every commutative square into an anti-commu-
tative square.

As a consequence of Lemma 5.11, the isomorphism class of the complex obtained does not depend
on the choice of gl2-scalar assignment. It is easily checked that the construction above coincides
with the definition of covering Agl2(Komgl2(D)) given in Subsection 3.1.1. In particular, it is
shown in Definition 5.9 that the graded Koszul rule is a gl2-scalar assignment.1

3.3.3 A projective isomorphism of hypercubes

Let thenD be a sliced link diagram withN crossings, with a fixed choice of ordering on crossings
and arc orientations. To show Theorem 3.4, it suffices to exhibit an isomorphism between the
two hypercubes Hsl2(D; ϵsl2) and Hgl2(D; ϵgl2), where an isomorphism of hypercubes is a family
of isomorphisms at each vertex, such that all squares involved commute. We abuse notation and
denote Hsl2(D) (resp. Hgl2(D)) both the hypercube of resolutions (step (i)) and its algebraization
(step (ii)): the relevant hypercube should be clear by the context. We also use sl2 and gl2 as
subscripts to distinguish features of the two constructions. For instance, we write rgl2 to denote
the decoration on the vertex r ∈ {0, 1}N of the hypercube Hgl2(D) (that is, a web W , or the
graded k-module HomGFoam(∅,W ) depending on the context).

Looking at step (i) in the construction of the hypercubes, it is clear that sl(Hgl2(D)) = Hsl2(D):
that is, sl(rgl2) = rsl2 for each r ∈ {0, 1}N , and similarly for edges. For each vertexW = rgl2 of
Hgl2(D), fix a choice of undotted cup foam βW and a choice of total ordering on the set of con-
nected components π0(sl(W )). By Corollary 3.15, rgl2 has basis given by the set {β

W
δ }δ⊂π0(sl(W )).

On the other hand, rsl2 has basis given by the set {aδ}δ⊂π0(sl(W )), where aδ = aik . . . ai1 with
δ = {i1, . . . , ik} and i1 < . . . < ik. Hence, the map

ιW : βWδ 7→ µ(|δ| (1, 1), βW )aδ

defines an isomorphism of graded k-modules.2 Note that ιW depends on the choice of βW , but
not on the choice of ordering on π0(sl(W )). Moreover, by Proposition 3.16 the family of those
isomorphisms at each vertex defines a projective isomorphism of hypercubes, in the sense that for
each edge e : V →W in Hgl2(D), the square

□e :=

V W Hgl2(D)

sl(V ) sl(W ) Hsl2(D)

e

ιV ⟳ ιW

sl(e)

(10)

commutes up to invertible scalar (the symbol ⟳ denotes a choice of orientation). This scalar is
computed in the following lemma:

Lemma 3.18. Denote by τ ∈ k× the invertible scalar given by Proposition 3.16. Then either

e ◦ βV = τβW or e ◦ βV = τ
(
βWi1 +XY βWi2

)
,

1With the caveat of the previous footnote.
2One can think of aδ as corresponding to βW ◦ idW

δ : this makes no sense when it comes to composition, but this is
coherent with the interchange relation. Thinking this way makes some of the identities below clearer.
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depending on whether sl(e) is a merge or a split. We distinguish i1 from i2 using the arc orientation:
it goes from i1 to i2. Define

ψβ(e) :=

{
τ if sl(e) is a merge,
τµ((1, 1), βW ) if sl(e) is a split.

Then ιW ◦ e = ψβ(e)(sl(e) ◦ ιV ).

Note that ψβ(e) depends in general on the choices of arc orientation on e and undotted cup
foams βV and βW , but not on the choice of ordering on closed components. We postpone the
proof of Lemma 3.18 until after this discussion.

Ultimately, we are interested in comparing the hypercubesHsl2(D; ϵsl2) andHgl2(D; ϵgl2). The
above suggests the strategy of finding a 0-cochain φ on {0, 1}N such that the square

sl(V ) W Hgl2(D; ϵgl2)

sl(V ) sl(W ) Hsl2(D; ϵsl2)

ϵgl2 (e)e

φ(V )ιV ⟳ φ(W )ιW

ϵsl2 (e)sl(e)

commutes. That would define an isomorphism of hypercubes, and prove Theorem 3.4.
We can rephrase the problem as follows. Denote byHι(D) the (N+1)-dimensional hypercube

decorated as Hgl2(D) on {0, 1}N × {0}, as Hsl2(D) on {0, 1}N × {1}, and decorated with ι on
edges r × {0} → r × {1}. Define also the following 2-cochain ψ on Hι(D):

ψ :=


ψgl2 on {0, 1}N × {0},
ψsl2 on {0, 1}N × {1},
ψβ(e)

−1 on □e.

where we recall □e from (10).
Assume that ψ is a 2-cocycle. Then by contractibility of the hypercube, it is a coboundary,

and there exists some 1-cochain ϵ such that ∂ϵ = ψ. Denote by Hι(D; ϵ) the hypercube Hι(D)
obtained by multiplying each edge by its value on ϵ. By definition, ϵgl2 := ϵ|{0,1}N×{0} (resp.
ϵsl2 := ϵ|{0,1}N×{1}) is a gl2-scalar assignment (resp. a sl2-scalar assignment). In other words,
the hypercube {0, 1}N ×{0} (resp. {0, 1}N ×{1}) inHι(D; ϵ) coincides withHgl2(D; ϵgl2) (resp
Hsl2(D; ϵsl2)). Moreover, by Lemma 3.18 all squares of the kind□e commute, so that the (N +1)-
direction in the hypercubeHι(D; ϵ) defines an isomorphism of hypercubes betweenHgl2(D; ϵgl2)
and Hsl2(D; ϵsl2).

When is ψ a 2-cocycle? Note that it suffices that ψ is a 2-cocycle on every 3-dimensional cube
of Hι(D). As ψgl2 and ψsl2 are already 2-cocycles, it is only necessary that ψ is a 2-cocycle on
every 3-dimensional cube �S := S × {0, 1} for S a square of Hgl2(D) (see Fig. 3.7). We give an
orientation on �S such that it agrees with the orientation of e0∗.

To sum up, we have shown that:

Proposition 3.19. Let D be a sliced link diagram with N crossings. Assume given an ordering on
crossings, a choice of arc orientations, and a choice of undotted cup foams on the webs decorating
Hgl2(D). If for every square S of Hgl2(D), the identity

∂ψ( �S) = 1

holds, then there exist scalar assignments ϵgl2 and ϵsl2 such that Hgl2(D; ϵgl2) and Hsl2(D; ϵsl2) are
isomorphic. □
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�S :=

W00 W01

W10 W11

sl(W00) sl(W01)

sl(W10) sl(W11)

ιW01

e0∗

e∗0 e∗1
e1∗

sl(e0∗)
sl(e∗0) sl(e∗1)

sl(e1∗)

ιW00

ιW10
ιW11

S

sl(S)

Figure 3.7: The 3-dimensional cube �S , where S is a square of Hgl2(D), pictured on the top.

We end this subsection with the proof of Lemma 3.18.

Proof of Lemma 3.18. We have two cases: either sl(e) is a merge, or it is a split. In both cases, we
compare where the basis element βWδ is mapped through the two paths defining the square. The
first case is depicted below, where the two end-results are separated by a dashed line:

βVδ τµ(deg e, |δ| (1, 1)) βWδ

µ(|δ| (1, 1), deg βV ) aVδ

τµ(deg e, |δ| (1, 1))µ(|δ| (1, 1), deg βW ) aWδ

µ(|δ| (1, 1),deg βV ) aWδ

We use symmetry of µ and the identity deg βW = deg βV + deg e to conclude. Similarly, the
computation for the second case gives:

βVδ τµ(deg e, |δ| (1, 1)) idδW ◦
(
βWi1 +XY βWi2

)

µ(|δ| (1, 1), deg βV ) aVδ

τµ(deg e, |δ| (1, 1))µ((|δ|+ 1)(1, 1),deg βW ) aWδ
(
aWi1 +XY aWi2

)

µ(|δ| (1, 1), deg βV )
(
aWi1 +XY aWi2

)
aWδ

and the identity deg βW + (1, 1) = deg βV + deg e concludes.

3.3.4 Local analysis

For a sliced link diagram D together with choices as in Proposition 3.19, we need to verify

∂ψ( �S) = 1

for every square S in Hgl2(D).
The following is clear:
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Lemma 3.20. The value of ∂ψ( �S) does not depend on the choice of ordering on crossings.

We implicitly assume such a choice in the sequel.
Then, note that the value of ∂ψ( �S) only depends on choices relevant to �S ; namely, the

choice of arc orientations for crossings associated to S, and the choice of undotted cup foams for
webs associated to S. In other words, whether S is viewed as a square in Hgl2(D) or as a square
in Hgl2(D

′) for some other diagram D′ does not affect the value of ∂ψ( �S), provided the same
choices relevant to �S are made. This leads to the following lemma:

Lemma 3.21. Assume that for every sliced link diagram S with exactly two crossings, and for all
choices of arc orientations and undotted cup foams, the identity ∂ψ( �S) = 1 holds. Then Theorem 3.4
holds. □

Recall the pictures of Table 1: they describe each possible isotopy class, together with the data
of arc orientations, associated with such a sliced link diagram S. They are obtained by record-
ing only the 0-resolution for both crossings together with their arc orientation. More precisely,
pictures in Table 1 only picture the non-trivial local part, obtained by removing the simple closed
loops that do not contain the boundary of an arc.

Recall the ladybug local arc presentation from Remark 3.13: this was the only case where the
value of the sl2-2-cocycle ψsl2 could be set differently. For the other cases, a generic argument is
sufficient:

Proposition 3.22. Assume the Technical Condition for k (Definition 3.3). Let S be a sliced link
diagram with exactly two crossings, together with choices of arc orientations and undotted cup foams.
Then:

(i) if the local arc presentation of S is not a ladybug, then ∂ψ( �S) = 1,

(ii) if the local arc presentation of S is a ladybug, then ∂ψ( �S) = 1 or ∂ψ( �S) = XY .

Proof. Recall the notations of Fig. 3.7. As ψ is the 2-cochain controlling the commutativity in �S ,
by definition we have that p = ∂ψ( �S)p for p = sl(e∗1) ◦ sl(e0∗) (see Lemma 3.18). In particular:

(1− ∂ψ( �S))p(1) = 0. (11)

the element p(1) admits a unique decomposition into basis elements: p(1) =
∑n

i=1 λiaδi for
some scalars λi ∈ k and some subsets δi ⊂ sl(W11). The above relation and the unicity of the
decomposition implies that (1 − ∂ψ( �S))λi = 0 for all i = 1, . . . , n. Hence, if any of the λi’s is
invertible, we automatically get that ∂ψ( �S) = 1.

The only case where we get non-invertible coefficients is when sl(e0∗) is a split and sl(e∗1)
is a merge, that is, in the ladybug cases. In these cases, we have p(1) = (1 + XY )aj for some
j ∈ sl(W11). The Technical Condition forces either ∂ψ( �S) = 1 or ∂ψ( �S) = XY .

If ∂ψ( �S) = 1 holds for all choices with a ladybug local arc presentation, then Theorem 3.4
holds. If on the contrary ∂ψ( �S) = XY holds for all choices with a ladybug local arc pre-
sentation, then Theorem 3.4 still holds, as we can apply the same reasoning using instead the
sl2-2-cocycle ψsl2 defined in Remark 3.13. This amounts to compare our gl2-construction with the
sl2-construction of type Y. In either case, we construct an isomorphism between the gl2-hypercube
and the sl2-hypercubes of type X or type Y, the latter two being isomorphic.

In other words, what matters is that, whatever the value of ∂ψ( �S), it remains the same for
all the choices involved. This is given by the following proposition:
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Proposition 3.23. Let S be a sliced link diagram with exactly two crossings, together with choices
of arc orientations and undotted cup foams. Then the value of ∂ψ( �S) only depends on the local arc
presentation of S.

The proof of Proposition 3.23 is given in Subsection 3.3.5.
Remark 3.24. A direct computation shows that in fact, we do have ∂( �S) = 1 even in the case
of a ladybug local arc presentation. It is interesting to note that, if we change the defining zigzag
relations as follows:

i

=
i

i
= X

i i
= XY Z2

i

i

= XZ2
i

leaving the rest of the definition identical, we get ∂( �S) = XY in the ladybug case. Following [74,
Section 4.5] (see also [73, Section 7.4]), this variant satisfies the same basis theorem as GFoamd,
and the same proof goes through. It is not clear to the authors whether this other graded-2-
category of graded gl2-foams is isomorphic toGFoamd.

3.3.5 Independence on choices

We conclude the proof of Theorem 3.2 by proving Proposition 3.23. With the notation of Fig. 3.7,
recall that S is oriented as follows:

S =

W00 W10

W01 W11

e∗0

e0∗ ⟳ e1∗

e∗1

and similarly for sl(S). We compute that:

∂ψ( �S) = ψgl2(S)ψsl2(sl(S))
−1∂ψβ(S).

Lemma 3.25. Let S be a sliced link diagram with exactly two crossings, together with choices of arc
orientations and undotted cup foams. Then the value of ∂ψ( �S) does not depend on the choices of
arc orientations and undotted cup foams.

Proof. Assume we swap the arc orientation of the kth crossing. Then ∂ψβ(S) will contribute an
additional factor XY for every split in direction k. Looking case by case at Table 1, one checks
that this change is exactly compensated by the contribution of ψsl2(sl(S)). The value of ψgl2(S)
does not change. Hence, changing the arc orientations does not change the value of ∂ψ( �S).

Assume we change the choice of undotted cup foams instead. Let β and β be two choices of
undotted cup foams, identical everywhere except at some vertex W . Denote by τ the invertible
scalar such that βW = τβW .1 Then:

ψβ(→W ) = ψβ(→W )/τ and ψβ(W →) = ψβ(W →) · τ,

where → W (resp W →) denotes an incoming (resp. outgoing) edge in Hgl2(S). In particular,
∂ψβ(S) = ∂ψβ(S). One also checks that the values of ψgl2(S) and ψsl2(sl(S)) do not change.
Hence, changing the choice of undotted cup foams does not change the value of ∂ψ( �S).

1The existence of such a scalar can be deduced from Theorem 2.25.
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Next we check Proposition 3.23 for planar isotopies. Actually, we show a bit more, namely that
the value of ∂ψ( �S) is independent of the choice of spatial representative for S. A spatial sliced
representative of a link diagram S is a sliced diagram that is a representative of S up to spatial
isotopies (see Definition 2.12).

Lemma 3.26. Let S be a sliced link diagram with exactly two crossings, together with choices of arc
orientations and undotted cup foams. Then the value of ∂ψ( �S) does not depend on the spatial sliced
representative.

Proof. Let S and S be two sliced link diagrams in the same spatial isotopy class. Throughout the
proof we use the notation (−) to distinguish features related to S. By Lemma 3.25, we may freely
choose arc orientations and undotted cup foams.

Pick a choice of arc orientations onS. Then there are arc orientations onS naturally associated
with the one on S: for instance, one can use an orientation on S to record arc orientations, and
orientation of link diagrams is preserved by spatial isotopies. With this choice, we have ψsl2 =
ψsl2 .

Recall that if S and S are planar isotopic, then by Lemma 3.8 there exist scalar assignments ϵ
and ϵ such that Hgl2(S; ϵ) and Hgl2(S; ϵ) are isomorphic. This extends to the spatial case, thanks
to the following pair of isomorphisms inGFoam:

+

XY

(
+

)

Denote φ : Hgl2(S; ϵ) → Hgl2(S; ϵ) such an isomorphism. If β is a choice of undotted cup foams
for S, then φ ◦β is a choice of undotted cup foams for S. Then, for each edge e : r → s in {0, 1}2,
denoting Fe and F e the corresponding foams in Hgl2(S) and Hgl2(S) respectively, we have that:

ϵ(e)
(
F e ◦ β

r
)
= ϵ(e) (φs ◦ Fe ◦ βr)

= ϵ(e)ψβ(e)

{
βs if Fe, F e are merges,
(βsi1 +XY βsi2) if Fe, F e are splits.

Hence, we have ψβϵ = ψβϵ. That implies ∂(ψβ)ψgl2
= ∂(ψβ)ψgl2 . This concludes the proof.

Finally, we need to check that ∂ψ( �S) only depends on the local arc presentation. Up to
spatial isotopies, we can slide away all closed simple loops. The next lemma concludes the proof
of Proposition 3.23.

Lemma 3.27. Let D0 and D1 be two sliced link diagrams, such that D1 has two crossings and D0

none. Then ∂ψ( �D1) = ∂ψ( �D0⋆0D1).

Proof. If W0 is the web corresponding to D0 and βW0 is a choice of undotted cup foam for W0,
then (idW0 ⋆0 β

W ) ⋆1 β
W0 is an undotted cup foam for every undotted cup foam βW . This defines

a choice of undotted cup foams on D0 ⋆0 D1, given one on D1. It is also clear how to define arc
orientations onD0 ⋆0D1 given such a choice onD1. With these choices, ψgl2 , ψsl2 and ψβ remain
identical, and Lemma 3.25 concludes.
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4 A graded-categorification of the q-Schur algebra of level 2

This section introduces a diagrammatic graded-2-category that categorifies the q-Schur algebra
of level 2. Then, we define a graded foamation 2-functor that relates this construction to graded
gl2-foams. This can be seen as a partial super analogue of [52] in the gl2 case. See also [56] for
earlier work.

Diagrammatic categorification of quantumgroupswas independently introduced byKhovanov–
Lauda [50] and Rouquier [71]. A super analogue of this construction was given by Brundan and
Ellis [12], building on earlier work of Kang, Kashiwara and Tsuchioka [46]. For odd sl2, this was
already studied in [40, 41]. See also [43, 44, 45] for related work.

In the even case, a categorification of the q-Schur algebra appeared in [58]. In [79], the second
author defined a supercategorification of the negative half of the q-Schur algebra of level 2. A
graded version of this construction was given in [61]. In the same paper, Naisse and Putyra also
defined a “1-map” from this graded version to their construction. This 1-map has similarities with
our graded foamation 2-functor: we expect the two to coincide once an equivalence between [61]
and our category of graded gl2-foams is found.

Our presentation of the categorification of the q-Schur algebra of level 2 has similitude with
the presentation of super Kac–Moody 2-algebras in [12]. However, and contrary to the even case,
it is not obtained as a quotient of their construction. See also Remark 1.6.

Subsection 4.1 review the definition of Ṡn,d, the idempotented q-Schur algebra of level 2. Its
graded-categorification, that we call the graded 2-Schur algebra GSn,d, is introduced in Subsec-
tion 4.2. Subsection 4.3 then defines the graded foamation 2-functor from GSn,d into GFoamd,
our graded-2-category of gl2-foams defined in Subsection 2.3. Finally, we show in Subsection 4.4
that GSn,d categorifies Ṡn,d.

4.1 The q-Schur algebra of level 2

Definition 4.1. The (idempotented) q-Schur algebra of level 2, or simply Schur algebra, is the
Z[q, q−1]-linear category Ṡn,d such that:

• Objects are weights in the set

Λn,d := {λ ∈ {0, 1, 2}n | λ1 + . . .+ λn = d}.

• Morphisms are Z[q, q−1]-linear combinations of iterated compositions of identity morphisms
1λ : λ→ λ and generating morphisms

ei1λ : λ→ λ+ αi and fi1λ : λ→ λ− αi i = 1, . . . , n− 1,

where αi := (0, . . . , 1,−1, . . . , 0) ∈ Zn with 1 being on the i-th coordinate. Morphisms are
subject to the Schur quotient

1λ = 0 if λ ̸∈ Λn,d

and to the following relations:
(eifj − fjei)1λ = δij [λi]q1λ

(eiej − ejei)1λ = 0 for |i− j| > 1

(fifj − fjfi)1λ = 0 for |i− j| > 1

(12)
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where λi := λi − λi+1, the symbol δij is the Kronecker delta and

[m]q = qm−1 + qm−3 + . . .+ q3−m + q1−m

is themth quantum integer.

Recall that a Z[q, q−1]-linear category is the same as a Z[q, q−1]-algebra with a distinguished
set of idempotents, so that Ṡn,d is indeed an algebra. The “level 2” stands for the fact that the value
of coordinates is at most two. The Schur quotient implies that a morphism that factors through
a weight not in Λn,d is set to zero. In the sequel, it is understood that an expression involving a
weight that does not belong to Λn,d is set to zero.
Remark 4.2. The q-Schur algebra of level 2 is an integral form for the fundamental representations
of Uq(gl2), analogous to the role of the Temperley–Lieb algebra for Uq(sl2). Let

∧k :=
∧k(C(q)2)

for k = 0, 1, 2 denote the fundamental representations of Uq(gl2), with C(q)2 the standard repre-
sentation. Let Fundn,d(Uq(gl2)) denote the full subcategory of Uq(gl2)-representations consisting
of n-fold tensor products

∧k1 ⊗ . . .⊗
∧kn with k1 + . . .+ kn = d. Then:

Ṡn,d ⊗ C(q) ∼= Fundn,d(Uq(gl2)),

where the isomorphism is an isomorphism of C(q)-linear categories (see [17]).

4.1.1 Relationship with gl2-webs

Each generating 1-morphism of Ṡn,d can be represented as a ladder diagram:

ei1(λi,λi+1) 7→
λi

λi+1

λi + 1

λi+1 − 1
fi1(λi,λi+1) 7→

λi

λi+1

λi − 1

λi+1 + 1

Representing coordinates 0, 1 and 2 respectively with a dotted line , a single line and a
double line , ladder diagrams take the following local form:

e1(1,1) 7→ e1(0,1) 7→ e1(1,2) 7→ e1(0,2) 7→

f1(1,1) 7→ f1(1,0) 7→ f1(2,1) 7→ f1(2,0) 7→

The ladder diagrammatics can be understood as a “rigidification” of web diagrammatics (see Sub-
section 2.2). Forgetting zero entries defines a mapping λ 7→ λ from Λn,d to Λn,d, and forgetting
dotted lines and smoothing corners defines a functor Fn,d from Ṡn,d toWebd.

The following is a special case of the combination of Theorem 4.4.1 and Theorem 3.3.1 from
[17]:

Lemma 4.3. The functor Fn,d : Ṡn,d →Webd is faithful.

4.2 The graded 2-Schur algebra

Recall the definitions of k and µ : Z2×Z2 → k× in Definition 2.15. We use the following notation:

pij := ((αj)i+1,−(αj)i) =


(0, 1) if j = i− 1,

(−1,−1) if j = i,

(1, 0) if j = i+ 1,

(0, 0) otherwise.
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Definition 4.4. The graded 2-Schur algebra GSn,d is the Z-graded (Z2, µ)-graded-2-category such
that:

• Objects are elements λ for λ ∈ Λn,d.

• 1-morphisms are compositions of the generating 1-morphisms

1λ : λ→ λ, Fi1λ : λ→ λ− αi and Ei1λ : λ→ λ+ αi,

whenever both λ and λ−αi (resp. λ and λ+αi) are objects ofΛn,d. Using string diagrammatics,
the identity 1λ is not pictured, and the non-trivial 1-generators are pictured as follows:

λλ − αi

i

= idFi1λ
λλ + αi

i

= idEi1λ

Note that we read from bottom to top and from right to left.

• 2-morphisms are k-linear combinations of string diagrams generated by formal vertical and
horizontal compositions of the following generating 2-morphisms:

i

λ

: 1λ → EiFi1λ
i

λ : EiFi1λ → 1λ

(λi+1,−λi) + (0, 1) −(λi+1,−λi) + (1, 0)

i

λ : Fi1λ → Fi1λ
i j

λ : FiFj1λ → FjFi1λ

(1, 1) pij

where the Z2-degree degZ2 is given below each generator. Such string diagrams are called
Schur diagrams.

2-morphisms are further subject to axioms described below. The quantum grading on GSn,d is the
Z-grading defined by qdeg(D) := q(degZ2(D)) (where q(a, b) = a+ b; see Remark 2.17).

One only needs to label one region is a given diagram, as it determines the label of all the other
regions. If this forces a region to be labelled by a weight λ that does not belong to Λn,d, we set
this diagram to zero. In that case, we say that the diagram is zero “due to the Schur quotient”.

We assume that the generators in a string diagram are always in generic position, in the sense
that the vertical projection defines a separative Morse function. Generating 2-morphisms are sub-
ject to the following local relations:

(1) As in any graded-2-category, we have the graded interchange law:

f

i1

· · ·
ik

· · ·

g

i1

· · ·
ik

· · ·
= µ(degZ2 f, degZ2 g)

f

i1

· · ·
ik

· · ·
g

i1

· · ·
ik

· · ·

(2) Two dots annihilate:

i

λ = 0 (13)
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(3) Graded KLR algebra relations for downward crossings:

i j

λ =



0 if i = j

i j

λ if |i− j| > 1

−XY Z
i i + 1

λ + XY Z

i i + 1

λ if j = i+ 1

Y Z2

i i − 1

λ − Y Z2

i i − 1

λ if j = i− 1

(14)

i j

λ = µ((1, 1), pij)

i j

λ for i ̸= j (15)

i j

λ = µ(pij , (1, 1))

i j

λ for i ̸= j (16)

i i

λ −XY
i i

λ =

i i

λ =

i i

λ −XY
i i

λ (17)

i kj

λ = µ(pjk, pij)µ(pik, pij)µ(pjk, pik)

i kj

λ

unless i = k and |i− j| = 1

(18)

−Y Z−2

i ii + 1

λ + Z−1

i ii + 1

λ =

i i + 1 i

λ (19)

XY Z−1

i ii − 1

λ −XZ−2

i ii − 1

λ =

i i − 1 i

λ (20)

(4) Graded adjunction relations:

i

λ =
i

λ

i

λ = X1+λi+1Y λi

i

λ (21)

Finally, we require invertibility axioms. To define it, we introduce the following shorthands:

n
i

λ :=

(
i

λ

)◦n

i j

λ :=
i

j

λ
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Recall the notation λi := λi − λi+1. Then:

(5) Except if they are zero due to the Schur quotient, the following 2-morphisms are isomor-
phisms in the graded additive envelope of GSn,d (see Subsection 2.1.2):

i j

λ : FiEj(λ)→ EjFi(λ) if i ̸= j (22)

i i

λ ⊕
λi−1⊕
n=0

n

i

λ
: FiEi(λ)⊕ λ⊕[λi] → EiFi(λ) if λi ≥ 0 (23)

i i

λ ⊕
−λi−1⊕
n=0

n

i

λ
: FiEi(λ)→ EiFi(λ)⊕ λ⊕[−λi] if λi ≤ 0 (24)

This ends the definition of the relations on the graded 2-Schur algebra. ⋄
Remark 4.5. Let us elaborate on the invertibility axioms above. They are equivalent to the exis-
tence of some unnamed generators which are entries of the inverse matrices of (22), (23) and (24),
and some unnamed relations that precisely encompass the fact that those generators form inverse
matrices. This definition follows Rouquier’s approach [71] to 2-Kac–Moody algebras (categorified
quantum groups) and Brundan and Ellis’ approach [12] to super 2-Kac–Moody algebras. Unravel-
ling the definition would lead to a more explicit (but heavier) definition, similar to Khovanov and
Lauda’s approach [50] to categorified quantum groups.
Remark 4.6. Some scalars in the relations above can be understood as artefacts of interchanging
the vertical positions of the generators. For instance, the scalar in relation (15) is precisely the
scalar that appears when interchanging a dot and a (i, j)-crossing. A similar reasoning applies to
relations (16) and (18).

In [58, Definition 3.2], a categorification of the q-Schur algebra was constructed, denoted
S(n, d). Let us write S(n, d)• for the k-linear1 2-category obtained from S(n, d) by further im-
posing relation (13). Then:

Proposition 4.7. Let (GSn,d)⊕
q
be additive shifted closure of GSn,d (see Subsection 2.1.2) with respect

to the quantum grading (see Subsection 2.1.2 and Definition 4.4). Then:

S(n, d)• ∼= (GSn,d)⊕
q

∣∣∣
X=Y=Z=1

.

Sketch of proof. Defining the unnamed generators implied by the invertibility axioms and doing a
relation chase exhibit the missing relations. One only need to rescale the (i, i)-downward crossing
by (−1). This exactly follows the proof from [10] showing the equivalence between Rouquier’s
definition of Kac–Moody 2-algebras and Khovanov-Lauda categorified quantum groups. See also
[12] for a related statement in the super case.

4.3 The graded foamation 2-functor

This section exhibits GFoamd as a 2-representation of GSn,d. More precisely, for each n, d ∈ N
there exists a (Z2, µ)-graded 2-functor

Fn,d : GSn,d → GFoamd.

1The linear 2-category S(n, d) is defined over Q in [58], but it can be defined over Z and hence over any unital
commutative ring.
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This categorifies the functor Fn,d : Ṡn,d →Webd defined in Subsection 4.1.1.
On the level of objects, the functorFn,d maps aweight λ ∈ Λn,d to the weight λ ∈ Λd, obtained

by forgetting all zero entries in λ. Recall the colour of a coordinate defined in Subsection 2.2. For
i ∈ {1, . . . , n} such that λi ̸= 0, we denote iλ the colour of the coordinate of the “image” of i in
λ. For instance:

(1, 0, 1, 2, 0, 1) = (1, 1, 2, 1) and 1λ = 1, 3λ = 2, 4λ = 3 and 6λ = 5.

In the string diagrammatics of foams, the functor Fn,d is given by

i

λ 7→ λ
,

iλ

λ ,

iλ

λ ,

iλ+1 iλ

λ

(λi, λi+1) (1, 0) (2, 0) (1, 1) (2, 1)

(25)

i

λ 7→ λ
,

iλ

λ ,

iλ

λ ,

iλ iλ+1

λ

(λi, λi+1) (0, 1) (0, 2) (1, 1) (1, 2)

(26)

The local data of (λi, λi+1) is given below each case.
Following [61, p. 59], we shall use the scalar

Γλ(i) := (−XY )#{λj=1|j≤i}

to normalize the graded foamation 2-functor.

Proposition 4.8. There exists a (Z2, µ)-graded 2-functor

Fn,d : GSn,d → GFoamd

defined on generating 2-morphisms as in Fig. 4.1. We call Fn,d the graded foamation 2-functor.

Proof. One checks that Fn,d preserves the Z2-grading. We need to check that the images through
Fn,d of the defining relations of the graded 2-Schur algebra are relations in GFoamd. This is
analogous to the proof of [52, Proposition 3.3]. The main additional work is to check that the
scalars match. For readability, we leave implicit the label of regions for foam diagrams.

The fact that Fn,d respects relation (13) follows from dot annihilation in foams. For rela-
tion (14), the case i = j follows from the evaluation of an undotted counterclockwise bubble
and the case |i− j| > 1 follows from the Reidemeister II braid-like relation. Consider then
the case j = i − 1. For λi = 2, both sides of (14) are zero due to the Schur quotient. If
(λi−1, λi, λi+1) = (1, 1, 0), we have:

Fn,d


i i − 1

λ

 = Γλ(i)

iλ−1

= Γλ(i)

 Y Z2

iλ−1

+XZ2

iλ−1


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i

λ Γλ(i)
7→

λ
iλ

iλ

λ

iλ

λ

iλ+1 iλ

λ

(λi, λi+1) (1, 0) (2, 0) (1, 1) (2, 1)

i

λ 7→ λ
Z−2

iλ

λ

iλ

λ Z−1

iλ+1iλ

λ

(λi, λi+1) (1, 0) (2, 0) (1, 1) (2, 1)

i

λ

7→ λ
iλ

λ

iλ

λ

iλ iλ+1

λ

(λi, λi+1) (0, 1) (0, 2) (1, 1) (1, 2)

i i− 1

λ

7→
iλ−1

λ

iλ−1

iλ−2

λ

iλ−1

iλ

λ

iλ−1

iλiλ−2

λ

(λi−1, λi, λi+1) (1, 1, 0) (2, 1, 0) (1, 1, 1) (2, 1, 1)

i− 1 i

λ
Γλ(i)
7→

iλ−1

λ

iλ−1

iλ−2

λ

iλ−1

iλ

λ

iλ−1

iλiλ−2

λ

(λi−1, λi, λi+1) (1, 1, 0) (2, 1, 0) (1, 1, 1) (2, 1, 1)

i

λ 7→ (−XY )Γλ(i)

iλ

λ

i j

λ 7→ λ if |i− j| > 1

Figure 4.1: Definition of Fn,d on generating 2-morphisms. For dots, rightward cups and caps, and
adjacent crossings, it depends on the local value of λ, which is given below each case. A symbol
Γλ(i) above a “mapsto” arrow means that the codomain should be multiplied by Γλ(i). For distant
crossings (last picture), the picture means that one should replace each strand of the Schur crossing
with the corresponding strand or pair of strands as prescribed by (25). This defines a foam diagram
consisting of one, two or four crossings.
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= Fn,d

Y Z2

i i − 1

λ − Y Z2

i i − 1

λ


where we used Lemma 2.24 and Γλ−αi−1

(i) = Γλ(i) = (−XY )Γλ(i− 1). Other cases for which
λi = 1 are computed similarly. If λi = 0, the left-hand side of (14) is zero due to the Schur
quotient. If (λi−1, λi, λi+1) = (2, 0, 1), the image of the right-hand side is

Γλ−αi−1
(i) Y Z2

iλ+1 iλ

− Γλ(i− 1)Y Z2

iλ+1 iλ

= 0,

which follows from Γλ−αi−1
(i) = Γλ(i−1). Other cases for which λi = 0 are computed similarly.

When j = i+1, both sides are zero due to the Schur quotient when λj = 0, and only the left-hand
side when λj = 2. For the representative case (λj−1, λj , λj+1) = (1, 1, 0), one gets:

Fn,d


j − 1 j

λ

 = Γλ(j) l(j)− 1

= Γλ(j)

(
Z l(j)− 1 + XY Z l(j)

)

= Fn,d

−XY Z
j − 1 j

λ +XY Z

j − 1 j

λ


which follows from Γλ−αj

(j − 1) = (−XY )Γλ(j), and the latter from. For the representative
case (λi−1, λi, λi+1) = (1, 2, 0), the image of the right-hand side of (14) gives:

−Γλ−αj
(j − 1) XY Z

j
λ
− 1 j

λ

+ Γλ(j)XY Z

j
λ
− 1 j

λ

= 0,

which follows from Γλ−αj
(j − 1) = Γλ(j) and dot migration.

For relations (15) and (16), it follows from the graded interchange law and dot migration. The
relation (17) follows directly from the (vertical) neck-cutting relation.

Consider now relation (18). If all colours are pairwise equal or adjacent (i.e. cases i = j = k
and i = j = k±1 together with permutations), then either the case is excluded by assumption, or
both sides are zero by the Schur quotient. In particular, we can disregard the normalization with
the Γ’s (this follows from the fact that Γλ−αj

(i) = Γλ(i) whenever i ̸= j). If a colour is distant
from the two others (i.e. cases |i− j| > 1 and |i− k| > 1 together with permutations), then the
image under Fn,d of relation (18) is a composition of graded interchanges, consisting in moving
vertically the image of the only crossing with a (possibly) non-trivial Z2-grading. The last six
cases also consist of graded interchanges, each interchanging two saddles (zip or unzip) sharing a
common 1-facet. We picture below the domain and codomain of the six cases:

(i,j,k)=(l+1,l+2,l)

(i,j,k)=(l,l+2,l+1)
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(i,j,k)=(l+2,l,l+1)

(i,j,k)=(l+1,l,l+2)

(i,j,k)=(l+2,l+1,l)

(i,j,k)=(l,l+1,l+2)

This concludes the proof for the relation (18).
A case-by-case analysis of the possible values for (λi, λi+1, λi+2) shows that except for four

possibilities, the three diagrams in (19) are all set to zero by the Schur quotient. In the remain-
ing cases, exactly one summand on the left-hand side is set to zero by the Schur quotient. If
(λi, λi+1, λi+2) = (2, 0, 0), then

Fn,d

−Y Z−2

i ii + 1

λ

 = XZ−2

iλ

=

iλ

= Fn,d


i i + 1 i

λ

 ,

using Γλ−αi
(i + 1) = Γλ(i). The case (λi, λi+1, λi+2) = (2, 0, 1) is similar. If (λi, λi+1, λi+2) =

(2, 1, 0), then

Fn,d

Z−1

i ii + 1

λ

 = Z−1

iλ+1 iλ

=

iλ+1 iλ

= Fn,d


i i + 1 i

λ

 ,

using Γλ−αi+1
(i) = (−XY )Γλ(i+ 1). The case (λi, λi+1, λi+2) = (2, 1, 1) is similar.

A similar analysis can be done for the relation (20), giving four non-trivial cases, with only two
computations needed. We depict respectively the cases (λi−1, λi, λi+1) = (1, 2, 0) and (λi−1, λi, λi+1) =
(1, 1, 0):

Fn,d

XY Z−1

i ii − 1

λ

 = XY Z−1

iλ−1 iλ

=

iλ−1 iλ

= Fn,d


i i − 1 i

λ



Fn,d

−XZ−2

i ii − 1

λ

 = Y Z−2

iλ

=

iλ

= Fn,d


i i − 1 i

λ


using Lemma 2.24, and Γλ−αi

(i) = (−XY )Γλ(i) and Γλ−αi−1
(i) = Γλ(i), respectively. For

relation (21), it follows from the zigzag relations for foams:

i

λ 7→ λ Z−2

iλ iλ

Z−1

iλiλ+1

(1, 0) (2, 0) (1, 1) (2, 1)

i

λ 7→ λ

iλ

Z−2

iλ

Z−1

iλiλ+1

(0, 1) (0, 2) (1, 1) (1, 2)
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It remains to check that Fn,d preserves three inverse axioms (22), (23) and (24). Note that this
is independent of the coefficients in the defining relations of GFoamd, as those inverse axioms
only impose existence. For relation (22), it follows from graded isotopies and zigzag relations. For
λi = 0, one checks that the image of the leftward monochromatic crossing is the identity, up to
multiplication by an invertible scalar. Otherwise, it is zero by the Schur quotient. For λi = ±1,
The image of the leftward cup (resp. cap) is invertible due to the squeezing relation. Finally, for
λi = ±2 this is precisely the (vertical) neck-cutting relation.

In [79], the second author defined a “thick calculus” for the negative half of the super version
of the graded 2-Schur GSn,d. This amounts to working in a sub-category of the Karoubi envelope.
One can similarly define a thick calculus for the full graded 2-Schur, defining a graded-2-category
ǦSn,d. Then, following the line of the proof of the analogous result in the non-graded case as
given by Queffelec and Rose [67, Theorem 3.9], one can show that the foamation 2-functor factors
through ǦSn,d. The inclusion

ǦSn,d ↪→ ǦSn+1,d

is defined on objects as (λ1, . . . , λn) 7→ (λ1, . . . , λn, 0) and similarly for 1-morphisms and 2-mor-
phisms. Finally, following the line of proof of [67, Proposition 3.22]1 in the gl2-case, one can show
the following proposition. We leave the details to the reader.

Proposition 4.9. We have the following equivalence of (Z2, µ)-graded-2-categories:

colim
n∈N

(
. . . ↪→ ǦSn,d ↪→ ǦSn+1,d ↪→ . . .

) ∼= GFoamd.

4.4 The categorification theorem

Recall the notion of quantum Grothendieck ring from Subsection 2.1.2. As claimed, the graded
2-Schur algebra categorifies the Schur algebra of level 2:

Theorem 4.10. The graded 2-Schur algebra categorifies the q-Schur algebra of level 2::

K0(GSn,d)|q ∼= Ṡn,d,

where the isomorphism is an isomorphism of Z[q, q−1]-linear categories.

Note that Theorem 4.10 relies on Theorem 2.29 and hence on Theorem 2.25, whose proof is
given in [74].

Proof of Theorem 4.10. Relations (12) become 2-isomorphisms in GSn,d. The first relation is cate-
gorified by the invertibility axioms (22), (23) and (24). The second relation is categorified by (14)
in the case |i− j| > 1. Finally, the third relation is categorified by the analogue of (14), case
|i− j| > 1, for upward strands. We define the upward crossing as:

i j

λ :=

i j

λ

1Or rather, the analogue of this proposition when one imposes (13) and dot annihilation respectively.
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It then follows from adjunction relations (21) and (14), case |i− j| > 1, that:

i j

λ =

i j

λ if |i− j| > 1.

This implies that there exists a Z[q, q−1]-linear functor Ṡn,d → K0(GS⊕,cl
n,d ), full and surjective,

fitting into the following commutative diagram:

Ṡn,d K0(GS⊕,cl
n,d )

Webd K0(GFoam⊕,cl
d )

Fn,d K0(Fn,d)

∼=

⟳

The bottom arrow is an isomorphism thanks to Theorem 2.29 and the left arrow is faithful thanks
to Lemma 4.3. We conclude that the top arrow is also faithful, and hence it is an isomorphism.

5 Chain complexes in graded-monoidal categories

This section introduces a notion of the tensor product for chain complexes in a given graded-
monoidal category (Definition 2.5); more precisely, we restrict our study to homogeneous poly-
complexes. The special case of super-2-categories first appeared in the first author’s Master thesis
[75]. Crucially, we then show that this tensor product leaves homotopy classes invariant. Al-
though we work in the context of graded-monoidal categories for simplicity, all definitions and
results extend in a straightforward way to graded-2-categories.

This section is not conceptually difficult, but it is technical. We refer the reader to Subsec-
tion 3.1.1 for a minimalistic version, sufficient for the purpose of Section 3.
Notation 5.1. Fix n ∈ N and I := {i1 < . . . < in} a set of ordered indices, isomorphic to
{1 < . . . < n} as an ordered set. We view ZI ∼= Zn as an n-dimensional lattice and write
elements r ∈ ZI as ordered tuples r = (ri1 , . . . , rin); moreover, we abbreviate rik as rk, so that
r = (r1, . . . , rn). We write |r| := r1+ . . .+rn and denote (ei)i∈I the canonical basis of ZI ∼= Zn:

ei := (0
1
, . . . , 0

i−1
, 1
i
, 0
i+1
, . . . , 0

n
).

Hereabove the underlying numbers denote coordinates. For each r ∈ {0, 1}I and each i ∈ I , we
write r → r + ei the corresponding edge in the lattice ZI .
Notation 5.2. Fix k,G and µ as in Subsection 2.1, and fix a (G,µ)-graded-monoidal category C. To
reduce clutter, we often abuse notation and write f instead of deg f , where f is a morphism of C.
The distinction should be clear by the context. We also write ∗ instead of µ. For instance, for f , g
and h morphisms, we may write (f + g) ∗ h for µ(deg f + deg g,deg h). We sometimes use the
subscripted equal signs =k and =G to emphasize where equality holds.

Assumption. To simplify this already technical section, we assume that µ is sym-
metric (Definition 2.1) throughout.
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5.1 A graded Koszul rule

Recall that for a graph such as ZI , a cycle is an oriented loop of edges, and a 1-cochain on a graph
is said to be a 1-cocycle if it is zero on all cycles. For ZI , a 1-cochain is a 1-cocycle if and only if it
is zero on every square. A graph 1-cocycle is always the boundary of a graph 0-cochain.

Recall that if V = ⊕g∈GVg is a G-graded k-module, an element v ∈ V is said to be homoge-
neous if v ∈ Vg for some g ∈ G. If moreover v ̸= 0, then v has a well-defined degree deg v = g.

Definition 5.3. A homogeneous n-polycomplex A = (A,α, ψA) is the data of:

(i) a family A := (Ar)r∈ZI of objects Ar ∈ C,

(ii) a family α := (αr
i )r∈ZI ,i∈I of homogeneous morphisms αr

i : A
r → Ar+ei , such that

αr+ei
i ◦ αr

i = 0 for all i ∈ I , and such that each square anti-commutes:

αr+ei
j ◦ αr

i = −αr+ej
i ◦ αr

j ,

(iii) a G-valued 1-cocycle ψA on ZI such that ψA(r → r + ei) = degαr
i whenever αr

i ̸= 0.

If a square in A is non-zero in the sense that

αr+ei
j ◦ αr

i = −αr+ej
i ◦ αr

j ̸= 0,

then each of the four maps involved are non-zero, they have a well-defined degree, and the fol-
lowing condition holds:

degαr+ei
j + degαr

i = degα
r+ej
i + degαr

j . (27)

In other words, the partially-defined 1-cochain deg(−) is a 1-cocycle on non-zero squares. Con-
dition (iii) states the existence of a 1-cochain ψA that both extends deg(−) to zero maps and the
1-cocycle condition to zero squares. In particular, a square could be zero albeit having four non-
zero edges: in which case, although the equation (27) makes sense, it may not hold. Condition (iii)
ensures that it does.

Notation 5.1 and Definition 5.3 introduced standard notations for a generic homogeneous poly-
complex A. To continue our discussion, we give standard notations for another generic homoge-
neous polycomplex B.
Notation 5.4. Let m ∈ N and J = {j1 < . . . < jm} a set of ordered indices isomorphic to
{1 < . . . < m}. We use generically the letter j for an index j ∈ J , and denote s = (sj1 , . . . , sjm) =
(s1, . . . , sm) a vertex in the lattice ZJ . Furthermore, we write

I ⊔ J := {i1 < . . . < in < j1 < . . . < jm}.

We generically use the letter k for an index k ∈ I⊔J and the notation (r, s) for a vertex in ZI⊔J .
We let B = (B, β, ψB) be a homogeneousm-polycomplex.

Thanks to condition (ii), we associate to A a chain complex, its total complex, denoted as
(Tot(A),Tot(α)) and given by

Tot(A)t :=
⊕

r∈ZI ,|r|=t

Ar and Tot(α)|Ar :=
∑

1≤i≤n

αr
i .

Let B as in Notation 5.4 and let F := (F r,s : Ar → Bs)r∈ZI ,s∈ZJ be a family of morphisms in C.
Similarly to the above, it gathers as a morphism Tot(F ) : Tot(A)→ Tot(B).
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Definition 5.5. Let A = (A,α, ψA) and B = (B, β, ψB) be homogeneous polycomplexes. A family
of morphisms in C

F := (F r,s : Ar → Bs)r∈ZI ,s∈ZJ

is a chain morphism between A and B if Tot(F ) is a chain morphism between Tot(A) and Tot(B).
Let F,G : A→ B be two chain morphisms between A and B. A family of morphisms in C

H := (Hr,s : Ar → Bs)r∈ZI ,s∈ZJ

is a chain homotopy between F andG ifTot(H) is a chain homotopy betweenTot(F ) andTot(G).

In other words, while we use a restricted notion of complexes (namely, homogeneous poly-
complexes), chain maps and chain homotopies between them are the usual notions of chain maps
and chain homotopies. In particular, these chain maps and chain homotopies have no homogene-
ity conditions. Note also that if F is a chain map (resp. H is a chain homotopy), then F r,s = 0
whenever |r| ≠ |s| (resp. Hr,s = 0 whenever |r| ≠ |s|+ 1).

We now introduce the notion of tensor product of homogeneous polycomplexes, after setting
some further notations.

For each vertex r ∈ ZI , let p be a path in ZI from 0 to r. Since ψA is a cocycle, the value
|α| (r) := ψA(p) does not depend on the choice of path. Most importantly, it verifies the following:

|α| (r + ei)− |α| (r) =G ψA(r → r + ei) =G degαr
i , (28)

where the last equality holds whenever it makes sense, that is whenever αr
i ̸= 0.

Definition 5.6. Let ϵ be a k×-valued 1-cochain on ZI⊔J . With the notations above, the ϵ-tensor
product of A and B, denoted (A⊗ B)(ϵ), is the following data:

(i) family A⊗B = ((A⊗B)(r,s)) of objects (A⊗B)(r,s) := Ar ⊗Bs,

(ii) family α⊗ β = ((α⊗ β)(r,s)k ) of homogeneous morphisms

(α⊗ β)(r,s)k :=

{
ϵ(e)(αr

i ⊗ idBs) k = i ∈ I,
ϵ(e)(idAr ⊗ βsj ) k = j ∈ J ,

where e denotes the edge (r, s)→ (r, s) + ek,

(iii) 1-cocycle ψA ⊗ ψB on ZI⊔J given on e = (r, s)→ (r, s) + ek by

(ψA ⊗ ψB)(e) :=

{
ψA(r → r + ei) k = i ∈ I,
ψB(s→ s+ ej) k = j ∈ J .

For (A⊗B)(ϵ) to define a homogeneous (n+m)-polycomplex, ϵ needs to be such that squares
anti-commute. This is encapsulated in the following lemma, where □(r,s)

k,l with k < l denotes the
following oriented square in the lattice ZI⊔J :

(r, s) (r, s) + ek

(r, s) + el (r, s) + ek + el

⟳
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Lemma 5.7. Say that a 1-cochain ϵ on ZI⊔J is compatible if

∂ϵ(□(r,s)
k,l ) =

{
0 if k, l ∈ I or k, l ∈ J ,
−ψA(r → r + ei) ∗ ψB(s→ s+ ej) if k = i ∈ I and l = j ∈ J .

If ϵ is compatible, then (A⊗ B)(ϵ) defines a homogeneous (n+m)-polycomplex.

Proof. The case k, l ∈ I or k, l ∈ J is clear. In the case k = i ∈ I and l = j ∈ J , the square
□(r,s)

i,j , decorated by the data of A⊗ B, has the following form:

Ar ⊗Bs Ar+ei ⊗Bs

Ar ⊗Bs+ej Ar+ei ⊗Bs+ej

⟳

αr
i ⊗idBs

idAr⊗βs
j id

Ar+ei⊗βs
j

αr
i ⊗id

B
s+ej

The morphism corresponding to the path

(r, s)→ (r, s) + ei → (r, s) + ei + ej

is themorphism (βsj ∗ αr
i )α

r
i ⊗ βsj , while themorphism corresponding to the other path isαr

i ⊗βsj .
If the square is zero, it automatically anti-commutes. Otherwise, it is sufficient to have

∂ϵ(□(r,s)
i,j ) =k −(βsj ∗ αr

i )
−1 =k −ψA(r → r + ei) ∗ ψB(s→ s+ ej),

using symmetry of µ in the second equality.

Remark 5.8. Note that the compatibility condition is a sufficient condition to ensure that all squares
anti-commute, but a priori not a necessary one. Indeed, there might be some liberty on squares
that are zero. In particular, we could have αr

i ⊗ βsj = 0 even if αr
i ̸= 0 and βsj ̸= 0. This happens

for super gl2-foams C = SFoamd (here ⊗ should be understood as a horizontal composition):
for instance, one can pick αr

i and βsj elementary saddles (zip or unzip) such that sl(ids(αr
i )
⊗ βsj )

splits two circles and sl(αr
i ⊗ idt(βs

j )
) merges the two circles back into one circle.

Definition 5.6 defines a tensor product of homogeneous polycomplexes, provided that a com-
patible 1-cochain exists. Definition 5.9 and Lemma 5.10 below ensure existence.

Definition 5.9 (graded Koszul rule). The standard 1-cochain ϵA⊗B is the 1-cochain onHn+m given
on e = (r, s)→ (r, s) + ek by

ϵA⊗B(e) =

{
1 k = i ∈ I,
(−1)|r| |α| (r) ∗ ψB(s→ s+ ej) k = j ∈ J .

Note that if ψA = ψB = 1, then |α| (r)∗ψB(s→ s+ej) = 1 and we recover the usual Koszul
rule.

Lemma 5.10. The standard 1-cochain ϵA⊗B is compatible in the sense of Lemma 5.7.

Proof. Consider the square□(r,s)
k,l as above. If k, l ∈ I , the compatibility condition follows directly,

and if k, l ∈ J , it follows from the fact that ψB is a cocycle. Finally, if k = i ∈ I and l = j ∈ J ,
we get (using property (28)):

∂ϵ(□(r,s)
i,j ) =

(
(−1)|r|+1 |α| (r + ei) ∗ ψB(s→ s+ ej)

)
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(
(−1)|r| |α| (r) ∗ ψB(s→ s+ ej)

−1
)

= −
(
|α| (r + ei)− |α| (r)

)
∗ ψB(s→ s+ ej)

= −ψA(r → r + ei) ∗ ψB(s→ s+ ej).

We next check that this choice of compatible 1-cochain is essentially unique, among compatible
cochains (see Remark 5.8).1

Lemma 5.11. Let ϵ and ϵ′ be two compatible 1-cochains. Then (A ⊗ B)(ϵ) and (A ⊗ B)(ϵ′) are
isomorphic as chain complexes.

Proof. If ϵ and ϵ′ are both compatible, then ∂(ϵ(ϵ′)−1) is zero on all squares, and hence is a
1-cocycle. Let φ be a 0-cochain such that ∂φ = ϵ(ϵ′)−1. Consider the map

Φ: (A⊗ B)(ϵ)→ (A⊗ B)(ϵ′)

corresponding to multiplication by φ(r, s)when restricted to (r, s). It is straightforward to check
that this map defines an isomorphism for the associated total complexes.

From now on, we simply call (A⊗ B)(ϵA⊗B) the tensor product of A and B and denote it

A⊗ B = (A⊗B,α⊗ β, ψA ⊗ ψB).

Example 5.12. A chain complex C = (C•, ∂•) whose differentials ∂t are all homogeneous is a
homogeneous 1-polycomplex. An n-fold tensor product of homogeneous 1-polycomplexes is a
homogeneous n-polycomplex. This is the specific construction used in Subsection 3.1.1 to define
covering gl2-Khovanov homology.

We now come to the main result of this section:

Theorem 5.13. Let A1, A2, B1 and B2 be homogeneous polycomplexes. Then:

A1 ≃ B1 and A2 ≃ B2 implies A1 ⊗ A2 ≃ B1 ⊗ B2,

where ≃ denotes homotopy equivalence (see Definition 5.5).

The idea of the proof of Theorem 5.13 is straightforward: define induced morphisms and in-
duced homotopies on the tensor product. Precisely, Theorem 5.13 holds if the following holds:

(1) Given homogeneous polycomplexes Ak,Bk and chain maps Fk : Ak → Bk (k = 1, 2), there
exists a chain complex F1⊗F2 : A1⊗A2 → B1⊗B2. This definition is such that F1⊗F2 =
IdA1⊗A2 if F1 = IdA1 and F2 = IdA2 .

(2) Given homogeneous polycomplexes Ak,Bk, chain maps Fk, Gk : Ak → Bk and homotopies
Hk : Fk → Gk (k = 1, 2), there exists a homotopy H1 ⊗H2 : F1 ⊗ F2 → G1 ⊗G2.

This is the content of Subsection 5.2: part (1) is shown by Proposition 5.20, while part (2) is shown
by Proposition 5.22.

1The proof given below follows closely the proof of Lemma 2.2 in [65].
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5.1.1 Further directions

We did not investigate the categorical properties of the tensor product: for our purpose, the mere
existence of a homotopy equivalence in Theorem 5.13 is sufficient. It remains unclear whether the
construction of chain maps can be made functorial, or functorial up to homotopy.

Other possible questions include:

• Can we extend the definition of the tensor product to higher structures? That is, can we
define induced n-fold homotopies on the tensor product?

• Are the definitions of induced morphisms and induced homotopies unique up to higher
structures, similarly to Lemma 5.11?

• What is the most general case where one can define a (sensible) tensor product on chain
complexes in a graded-monoidal category? In particular, how far can we weaken condition
(iii) in Definition 5.3?

5.2 Induced morphisms and homotopies on the tensor product

5.2.1 Preliminary remarks

Recall the conventions of Notation 5.1 and Notation 5.4. We denote the graded Koszul rule defined
in Definition 5.9 as:

ϵr,s,kA⊗B :=

{
0 k = i ∈ I,
(−1)|r| |α| (r) ∗ ψB(s→ s+ ej) k = j ∈ J .

Remark 5.14. Note that in Definition 5.6, for k = j ∈ J the scalar ϵr,s,jA⊗B always appears in front
of an expression involving βsj . Thus, either βsj = 0 and the value of ϵr,s,jA⊗B is irrelevant, or βsj ̸= 0
and therefore ψB(s → s + ej) = deg βsj . In general, if an expression contains a homogeneous
element f , we can safely write deg f when defining or computing scalars appearing before the
given expression; if f turns out to be zero, this will be irrelevant anyway. See the next remark for
a similar statement when f in inhomogeneous.
Remark 5.15. Write [v]g the degree g homogeneous component of a vector v in aG-graded vector
space; in particular, v =

∑
g∈G[v]g . Recall that in graded-monoidal categories, a formula involv-

ing degrees of inhomogeneous morphisms should be understood by extending it additively. For
instance, the graded interchange law

(φ⊗ 1) ◦ (1⊗ ψ) = (degφ ∗ degψ)(1⊗ ψ) ∗ (φ⊗ 1)

for inhomogeneous f and g should really be understood as

(φ⊗ 1) ◦ (1⊗ ψ) =
∑

g,h∈G
(g ∗ h)(1⊗ [ψ]h) ∗ ([φ]g ⊗ 1).

We will encounter similar situations in what follows.
Notation 5.16. Weextend notations using subscripts toAk = (Ak, αk, ψAk

) andBk = (Bk, βk, ψBk
)

for k = 1, 2. From now on, we denote A = A1 ⊗ A2 and B = B1 ⊗ B2. This includes sets of in-
dices I = I1 ⊔ I2 and J = J1 ⊔ J2. We also use different shortcuts, such as r = (r1, r2) and
s = (s1, s2), that should be clear from the context.
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Before entering the main proofs, we define a generic k×-valued 0-cochain, satisfying generic
properties. In fact, Definition 5.19 and Definition 5.21 solely depend on this generic definition, and
all “degree-wise” computations follow from those generic properties.

Definition 5.17. For λk =
(
λrk,skk

)
(rk,sk)∈Ak⊗Bk

a pair of G-valued 0-cochains (k = 1, 2), let
ϵr,sλ1,λ2

be the following k×-valued 0-cochain:

ϵr,sλ1,λ2
:=
([
λr1,s11 + |α1| (r1)− |β1| (s1)

]
∗ |β2| (s2)

)−1 (
|α1| (r1) ∗ λr2,s22

)
.

Lemma 5.18. The generic k×-valued 0-cochain defined above satisfies the following:

(i) Assume ν1 :=G λ
r1+ei1 ,s1
1 +αr1

i1
=G λ

r1,s1−ej1
1 + β

s1−ej1
j1

holds for all i1 ∈ I1 and j1 ∈ J1;
in particular, the G-valued 0-cochain ν1 is defined independently of the choice of i1 and j1.
Then the following identities hold, for all i1 ∈ I1 and j1 ∈ J1:

ϵr,sν1,λ2
=k ϵ

r+ei1 ,s

λ1,λ2

(
λr2,s22 ∗ αr1

i1

)
=k ϵ

r,s−ej1
λ1,λ2

.

(ii) Assume ν2 :=G λ
r2+ei2 ,s2
2 +αr2

i2
=G λ

r2,s2−ej2
2 + β

s2−ej2
j2

holds for all i2 ∈ I2 and j2 ∈ J2;
in particular, the G-valued 0-cochain ν2 is defined independently of the choice of i2 and j2.
Then the following identities hold, for all i2 ∈ I2 and j2 ∈ J2:

ϵr,sλ1,ν2
=k (−1)|r1|ϵr1,r2,j2A1⊗A2

ϵ
r+ei2 ,s

λ1,λ2

=k (−1)|s1|ϵs1,s2−ej2 ,j2
B1⊗B2

ϵ
r,s−ej2
λ1,λ2

(
β
s2−ej2
j2

∗ λr1,s11

)
.

Proof. It follows from direct computations, using relation (28). Symmetry of µ gives the expres-
sions as in the lemma.

ϵ
r+ei1 ,s

λ1,λ2
=k

([
λ
r1+ei1 ,s1
1 + αr1

i1
+ |α1| (r1)− |β1| (s1)

]
∗ |β2| (s2)

)−1

·
([
|α1| (r1) + αr1

i1

]
∗ λr2,s22

)
=k ϵ

r,s
ν1,λ2

(
αr1
i1
∗ λr2,s22

)
ϵ
r,s−ej1
λ1,λ2

=k

([
λ
r1,s1−ej1
1 + β

s1−ej1
j1

+ |α1| (r1)− |β1| (s1)
]
∗ |β2| (s2)

)−1

·
(
|α1| (r1) ∗ λr2,s22

)
=k ϵ

r,s
ν1,λ2

(−1)|r1|ϵr1,r2,j2A1⊗A2
ϵ
r+ei2 ,s

λ1,λ2

=k
(
|α1| (r1) ∗ αr2,s2

i2

)([
λr1,s11 + |α1| (r1)− |β1| (s1)

]
∗ |β2| (s2)

)−1

·
(
|α1| (r1) ∗ λ

r2+ei2 ,s2
2

)
=k

([
λr1,s11 + |α1| (r1)− |β1| (s1)

]
∗ |β2| (s2)

)−1

·
(
|α1| (r1) ∗

[
λ
r2+ei2 ,s2
2 + αr2,s2

i2

])
=k ϵ

r,s
λ1,ν2
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(−1)|s1|ϵs1,s2−ej2 ,j2
B1⊗B2

ϵ
r,s−ej2
λ1,λ2

(
λr1,s11 ∗ βs2−ej2

j2

)−1

=k
(
|β1| (s1) ∗ β

r2,s2−ej2
j2

)
·
([
λr1,s11 + |α1| (r1)− |β1| (s1)

]
∗ |β2| (s2 − ej2)

)−1

·
(
|α1| (r1) ∗ λ

r2,s2−ej2
2

)(
λr1,s11 ∗ βs2−ej2

j2

)−1

=k

([
λr1,s11 + |α1| (r1)− |β1| (s1)

]
∗ |β2| (s2)

)−1

·
(
|α1| (r1) ∗

[
λ
r2,s2−ej2
2 + β

s2−ej2
j2

])
=k ϵ

r,s
λ1,ν2

.

5.2.2 Induced morphism on tensor product

Recall from Definition 5.5 that a chain map F : A→ B is a family of morphisms F r,s : Ar → Bs

for all |r| = |s| such that β ◦ F = F ◦ α, that is:∑
j∈J

β
s−ej
j ◦ F r,s−ej =

∑
i∈I

F r+ei,s ◦ αr
i .

Recalling that βs−ej
j and αr

i are assumed to be homogeneous, the above identity is equivalent to
the family of identities∑

j∈J
β
s−ej
j ◦

[
F r,s−ej

]
g−deg β

s−ej
j

=
∑
i∈I

[
F r+ei,s

]
g−degαr

i
◦ αr

i ∀g ∈ G.

Here we use the notation [−]g from Remark 5.15 to denote the degree g homogeneous component;
see also Remark 5.14.

Definition 5.19. Let Fk : Ak → Bk be chain maps for each k = 1, 2. Their induced morphism
F = F1 ⊗ F2 is the chain map F : A1 ⊗ A2 → B1 ⊗ B2 given by the data:

F r,s = ϵr,sF1,F2
F r1,s1
1 ⊗ F r2,s2

2 ,

where ϵr,sF1,F2
is as in Definition 5.17, with the abuse of notationFi = degFi and recalling Remark 5.15.

Proposition 5.20. Definition 5.19 gives a well-defined chain map. Moreover, if F1 and F2 are iden-
tities then F is the identity.

Proof. Note that if both F1 and F2 are identities, then

ϵr,sF1,F2
=
([

0 + |α1| (r1) + |α1| (r1)
]
∗ |α2| (s2)

)−1(
|α1| (r1) ∗ 0

)
= 1,

so that two identities induce the identity on the tensor product. To show the first part of the
statement, we must check that β ◦ F = F ◦ α. First, we unfold both sides of the equation:∑

j∈J
β
s−ej
j ◦ F r,s−ej

=
∑
j1∈J1

[
β
s1−ej1
j1

⊗ Id
]
◦
[
ϵ
r,s−ej1
F1,F2

F
r1,s1−ej1
1 ⊗ F r2,s2

2

]
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+
∑
j2∈J2

[
ϵ
s1,s2−ej2 ,j2
B1⊗B2

Id⊗ βs2−ej2
j2

]
◦
[
ϵ
r,s−ej2
F1,F2

F r1,s1
1 ⊗ F r2,s2−ej2

2

]
=

 ∑
j1∈J1

ϵ
r,s−ej1
F1,F2

β
s1−ej1
j1

◦ F r1,s1−ej1
1

⊗ F r2,s2
2 1

+ F r1,s1
1 ⊗

[ ∑
j2∈J2

(
β
s2−ej2
j2

∗ F r1,s1
1

)
ϵ
s1,s2−ej2 ,j2
B1⊗B2

ϵ
r,s−ej2
F1,F2

β
s2−ej2
j2

◦ F r2,s2−ej2
2

]
2

∑
i∈I

F r+ei,s ◦ αr
i

=
∑
i1∈I1

[
ϵ
r+ei1 ,s

F1,F2
F

r1+ei1 ,s1
1 ⊗ F r2,s2

2

]
◦
[
αr1
i1
⊗ Id

]
+
∑
i2∈I2

[
ϵ
r+ei2 ,s

F1,F2
F r1,s1
1 ⊗ F r2+ei2 ,s2

2

]
◦
[
ϵr1,r2,i2A1⊗A2

Id⊗ αr2
i2

]

=

∑
i1∈I1

(
F r2,s2
2 ∗ αr1

i1

)
ϵ
r+ei1 ,s

F1,F2
F

r1+ei1 ,s1
1 ◦ αr1

i1

⊗ F r2,s2
2 1

+ F r1,s1
1 ⊗

∑
i2∈I2

ϵ
r+ei2 ,s

F1,F2
ϵr1,r2,i2A1⊗A2

F
r2+ei2 ,s2
2 ◦ αr2

i2

 2

We want to show that the two terms labelled 1 (resp. 2 ) are equal, using the chain map relation
of F1 (resp. F2). Let us detail case 1 ; the general strategy will be similar for case 2 , and for the
proof of Proposition 5.22.

Restricting to homogeneous components of F r2,s2
2 , case 1 reduces to showing∑

j1∈J1

ϵ
r,s−ej1
F1,F2

β
s1−ej1
j1

◦ F r1,s1−ej1
1 =

∑
i1∈I1

([
F r2,s2
2

]
g
∗ αr1

i1

)
ϵ
r+ei1 ,s

F1,F2
F

r1+ei1 ,s1
1 ◦ αr1

i1

for each element g ∈ G for which
[
F r2,s2
2

]
g
̸= 0. Note that in the above equation, both ϵr,s−ej1

F1,F2

and ϵr+ei1 ,s

F1,F2
depend on F2 only through the value of deg

[
F r2,s2
2

]
g
= g. For simplicity, we abuse

notation and write F r2,s2
2 =

[
F r2,s2
2

]
g
; this has the same effect as assuming that F r2,s2

2 is homo-
geneous and non-zero. With this convention, the equation becomes:∑

j1∈J1

ϵ
r,s−ej1
F1,F2

β
s1−ej1
j1

◦ F r1,s1−ej1
1 =

∑
i1∈I1

(
F r2,s2
2 ∗ αr1

i1

)
ϵ
r+ei1 ,s

F1,F2
F

r1+ei1 ,s1
1 ◦ αr1

i1
.

In turn, the above can be shown by projecting onto each degree h homogeneous component, for
h ∈ G. Since βs1−ej1

j1
(resp. αr1

i1
) is assumed to be homogeneous, this enforces the degree of

F
r1,s1−ej1
1 (resp. F r1+ei1 ,s1

1 ) and gives:∑
j1∈J1

ϵ
r,s−ej1
F1,F2

β
s1−ej1
j1

◦
[
F

r1,s1−ej1
1

]
h−deg β

s1−ej1
j1
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=
∑
i1∈I1

(
F r2,s2
2 ∗ αr1

i1

)
ϵ
r+ei1 ,s

F1,F2

[
F

r1+ei1 ,s1
1

]
h−degα

r1
i1

◦ αr1
i1
.

We abuse notation and write F r1,s1−ej1
1 =

[
F

r1,s1−ej1
1

]
h−deg β

s1−ej1
j1

. This has the same effect as

assuming that F r1,s1−ej1
1 is homogeneous with the property that if both βs1−ej1

j1
and F r1,s1−ej1

1

are non-zero, then:
h = deg β

s1−ej1
j1

+ degF
r1,s1−ej1
1 .

For our purpose, we can assume the later holds whenever we compute with ϵr,s−ej1
F1,F2

(see Re-
mark 5.14). Lemma 5.18 then implies that ϵr,s−ej1

F1,F2
is independent of j1.

A similar reasoning applies to F r1+ei1 ,s1
1 , with the following degree condition:

h = degF
r1+ei1 ,s1
1 + degα

ri1
i1
.

In fact, Lemma 5.18 also shows that, whenever the relevant morphisms are non-zero, we have:

ϵ
r+ei1 ,s

F1,F2
=
(
F r2,s2
2 ∗ αr1

i1

)
ϵ
r+ei1 ,s

F1,F2

This allows us to use the chain map relation for F1 and concludes.
The proof of case 1 essentially comes down to using Lemma 5.18 with the following condi-

tions:

1 β
sj1−1

j1
+ F

r1,s1−ej1
1 =G F

r1+ei1 ,s1
1 + α

ri1
i1

for all i1 ∈ I1 and j1 ∈ J1

Here we use the abuse of notation that leaves deg(−) implicit. Case 2 is dealt with similarly,
using the following conditions:

2 β
sj2−1

j2
+ F

r2,s2−ej2
2 =G F

r2+ei2 ,s2
2 + α

ri2
i2

for all i2 ∈ I2 and j2 ∈ J2, and |r1| = |s1|.

Again, these are exactly the assumptions needed to apply Lemma 5.18.

5.2.3 Induced homotopies on the tensor product

Recall fromDefinition 5.5 that a chain homotopyH between chainmapsF : A→ B andG : A→ B
is a family of morphisms Hr,s : Ar → Bs for all |r| = |s|+ 1 such that

F r,s −Gr,s =
∑
i∈I

Hr+ei,s ◦ αr
i +

∑
j∈J

β
s−ej
j ◦Hr,s−ej .

Definition 5.21. Let Fk : Ak → Bk (resp. Gk) be chain maps and Hk : Fk → Gk homotopies for
each k = 1, 2. Denote F (resp. G) the chain map induced by F1 and F2 (resp. G1 and G2). Their
induced homotopy is the homotopy H : F → G given by the data:

Hr,s =ϵr,sH1,F2
Hr1,s1

1 ⊗ F r2,s2
2 + (−1)|r1|ϵr,sG1,H2

Gr1,s1
1 ⊗Hr2,s2

2

where the ϵ’s are defined as in Definition 5.17.

Proposition 5.22. Definition 5.21 gives a well-defined homotopy.
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Proof. We assume the reader is familiar with the proof of Proposition 5.20. We must check that
F − G = β ◦ H + H ◦ α. We unfold the two terms on the right-hand side (RHS), with first the
computation of β ◦H restricted to the paths from Ar to Bs:

(β ◦H)|Bs

Ar =
∑
j∈J

β
s−ej
j ◦Hr,s−ej

=
∑
j1∈J1

[
β
s1−ej1
j1

⊗ Id
]

◦
[
ϵ
r,s−ej1
H1,F2

H
r1,s1−ej1
1 ⊗ F r2,s2

2

+(−1)|r1|ϵr,s−ej1
G1,H2

G
r1,s1−ej1
1 ⊗Hr2,s2

2

]
+
∑
j2∈J2

[
ϵ
s1,s2−ej2 ,j2
B1⊗B2

Id⊗ βs2−ej2
j2

]
◦
[
ϵ
r,s−ej2
H1,F2

Hr1,s1
1 ⊗ F r2,s2−ej2

2

+(−1)|r1|ϵr,s−ej2
G1,H2

Gr1,s1
1 ⊗Hr2,s2−ej2

2

]
=
∑
j1∈J1

ϵ
r,s−ej1
H1,F2

[
β
s1−ej1
j1

◦Hr1,s1−ej1
1

]
⊗ F r2,s2

2 1

+ (−1)|r1|ϵr,s−ej1
G1,H2

[
β
s1−ej1
j1

◦Gr1,s1−ej1
1

]
⊗Hr2,s2

2 2

+
∑
j2∈J2

(
β
s2−ej2
j2

∗Hr1,s1
1

)
ϵ
s1,s2−ej2 ,j2
B1⊗B2

ϵ
r,s−ej2
H1,F2

Hr1,s1
1 ⊗

[
β
s2−ej2
j2

◦ F r2,s2−ej2
2

]
3

+
(
β
s2−ej2
j2

∗Gr1,s1
1

)
(−1)|r1|ϵs1,s2−ej2 ,j2

B1⊗B2
ϵ
r,s−ej2
G1,H2

Gr1,s1
1 ⊗

[
β
s2−ej2
j2

◦Hr2,s2−ej2
2

]
4

The computation of H ◦ α restricted to the paths from Ar to Bs gives:

(H ◦ α)|Bs

Ar

=
∑
i∈I

Hr+ei,s ◦ αr
i

=
∑
i1∈I1

[
ϵ
r+ei1 ,s

H1,F2
H

r1+ei1 ,s1
1 ⊗ F r2,s2

2

+(−1)|r1|+1ϵ
r+ei1 ,s

G1,H2
G

r1+ei1 ,s1
1 ⊗Hr2,s2

2

]
◦
[
αr1
i1
⊗ Id

]
+
∑
i2∈I2

[
ϵ
r+ei2 ,s

H1,F2
Hr1,s1

1 ⊗ F r2+ei2 ,s2
2
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+(−1)|r1|ϵr+ei2 ,s

G1,H2
Gr1,s1

1 ⊗Hr2+ei2 ,s2
2

]
◦
[
ϵr1,r2,i2A1⊗A2

Id⊗ αr2
i2

]
=
∑
i1∈I1

(
F r2,s2
2 ∗ αr1

i1

)
ϵ
r+ei1 ,s

H1,F2

[
H

r1+ei1 ,s1
1 ◦ αr1

i1

]
⊗ F r2,s2

2 1

+
(
Hr2,s2

2 ∗ αr1
i1

)
(−1)|r1|+1ϵ

r+ei1 ,s

G1,H2

[
G

r1+ei1 ,s1
1 ◦ αr1

i1

]
⊗Hr2,s2

2 2

+
∑
i2∈I2

ϵr1,r2,i2A1⊗A2
ϵ
r+ei2 ,s

H1,F2
Hr1,s1

1 ⊗
[
F

r2+ei2 ,s2
2 ◦ αr2

i2

]
3

+ (−1)|r1|ϵr1,r2,i2A1⊗A2
ϵ
r+ei2 ,s

G1,H2
Gr1,s1

1 ⊗
[
H

r2+ei2 ,s2
2 ◦ αr2

i2

]
4

We find four different pairs of terms, labelled 1 to 4 , that we simplify pairwise using chain map
or chain homotopy relations:

1 We can assume that for all i1 ∈ I1 and all j1 ∈ J1:

β
s1−ej1
j1

+H
r1,s1−ej1
1 =G H

r1+ei1 ,s1
1 + αr1

i1
=G F r1,s1

1 =G Gr1,s1
1 .

Thanks to Lemma 5.18 (i), the sum of the two 1 -terms is:[
ϵr1,s1F1,F2

F r1,s1
1 − ϵr1,s1G1,F2

Gr1,s1
1

]
⊗ F r2,s2

2 .

The computation is similar for case 4 .

3 We can assume |r1|+ 1 = |s1| and that:

β
s2−ej2
j2

+ F
r2,s2−ej2
2 =G F

r2+ei2 ,s2
2 + αr2

i2
.

Then, Lemma 5.18 (ii) shows that:(
Hr1,s1

1 ∗ βs2−ej2
j2

)
ϵ
s1,s2−ej2 ,j2
B1⊗B2

ϵ
r,s−ej2
H1,F2

= −ϵr1,r2,i2A1⊗A2
ϵ
r+ei2 ,s

H1,F2

independently of j2 and i2. We conclude that the sum of the pair 3 is zero. The computation
is similar for case 2 .

We conclude:

RHS =
[
ϵr1,s1F1,F2

F r1,s1
1 − ϵr1,s1G1,F2

Gr1,s1
1

]
⊗ F r2,s2

2

+Gr1,s1
1 ⊗

[
ϵr1,s1G1,F2

F r2,s2
2 − ϵr1,s1G1,G2

Gr2,s2
2

]
= ϵr1,s1F1,F2

F r1,s1
1 ⊗ F r2,s2

2 − ϵr1,s1G1,G2
Gr1,s1

1 ⊗Gr2,s2
2

= (F −G)|Bs

Ar .
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